Newer
Older
mod_res_params = ['M07', 'M08', 'M10', 'M12', 'M13', 'M14', 'M15', 'M16']
img_res_params = ['M07_highres', 'M08_highres', 'M10_highres', 'M12_highres', 'M13_highres', 'M14_highres', 'M15_highres', 'M16_highres']
def run_all(directory):
mod_tiles = []
img_tiles = []
for idx, mfile in enumerate(mod_files):
w_o_ext, ext = os.path.splitext(mfile)
ifile = w_o_ext+'uwssec'+ext
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
run(mfile, ifile, mod_tiles, img_tiles)
mod_nda = np.stack(mod_tiles)
img_nda = np.stack(img_tiles)
mod_mean = mod_nda.mean()
img_mean = img_nda.mean()
mod_std = mod_nda.std()
img_std = img_nda.std()
mod_nda = (mod_nda - mod_mean) / mod_std
img_nda = (img_nda - img_mean) / img_std
return mod_nda, img_nda
def run(mod_res_filename, img_res_filename, mod_tiles, img_tiles):
mod_h5f = h5py.File(mod_res_filename, 'r')
img_h5f = h5py.File(img_res_filename, 'r')
mod_tile_width = 64
img_tile_width = mod_tile_width * 2
mod_param = 'observation_data/M15'
img_param = 'observation_data/M15_highres'
mod_num_lines = mod_h5f[mod_param].shape[0]
mod_num_pixels = mod_h5f[mod_param].shape[1]
img_num_lines = img_h5f[img_param].shape[0]
img_num_pixels = img_h5f[img_param].shape[1]
mod_num_y_tiles = int(mod_num_lines / mod_tile_width)
mod_num_x_tiles = int(mod_num_pixels / mod_tile_width)
mod_data = get_grid_values(mod_h5f, mod_param, 0, 0, None, mod_num_lines, mod_num_pixels, range_name=None)
img_data = get_grid_values(img_h5f, img_param, 0, 0, None, img_num_lines, img_num_pixels, range_name=None)
num_cntr_tiles = 2
i_c = int(mod_num_pixels / num_cntr_tiles) # center
j_skip = int(mod_num_y_tiles / num_cntr_tiles) * mod_tile_width
for k in range(num_cntr_tiles):
j_c = k * j_skip
j_m = j_c
i_m = i_c
i_i = i_m * 2
nda = mod_data[j_m:j_m + mod_tile_width, i_m:i_m + mod_tile_width]
mod_tiles.append(nda)
nda = img_data[j_i:j_i + img_tile_width, i_i:i_i + img_tile_width]
img_tiles.append(nda)
# for j in range(mod_num_y_tiles):
# j_m = j * mod_tile_width
# j_i = j_m * 2
# for i in range(mod_num_x_tiles):
# i_m = i * mod_tile_width
# i_i = i_m * 2
#
# nda = mod_data[j_m:j_m+mod_tile_width, i_m:i_m+mod_tile_width]
# mod_tiles.append(nda)
# nda = img_data[j_i:j_i+img_tile_width, i_i:i_i+img_tile_width]
# img_tiles.append(nda)
# files = glob.glob(directory + 'clavrx_snpp_viirs*.h5')
files = Path(directory).rglob('clavrx_snpp_viirs*.h5')
try:
opd_nl = get_grid_values_all(h5f, 'cld_opd_nlcomp')
reff_nl = get_grid_values_all(h5f, 'cld_reff_nlcomp')
except:
continue
if np.sum(np.isnan(opd_nl)) < opd_nl.size and np.sum(np.isnan(reff_nl)) < reff_nl.size:
print(file)