Skip to content
Snippets Groups Projects
sss1day_FMB_py3.py 12.5 KiB
Newer Older
rink's avatar
rink committed
import os
rink's avatar
rink committed

# Import CODA definitions
	# Older dates
# os.putenv('CODA_DEFINITION', '/home/huiliu/CODA/share/coda/definitions/')
# os.putenv('CODA_DEFINITION', '/home/stevew/CODA/share/coda/definitions/')
os.putenv('CODA_DEFINITION', '/data/Personal/stevew/AEOLUS/CODA/share/coda/definitions/')
	# Newer dates
#os.putenv('CODA_DEFINITION', '/home/huiliu/CODA/share/coda/definitions/AEOLUS-20190611.codadef')

from numpy import vstack, zeros, linspace, where, logical_and
rink's avatar
rink committed

import sys
#   Tell python scripts where to find CODA (next import coda) --------
# sys.path.append('/home/huiliu/CODA/lib/python2.7/site-packages')
# sys.path.append('/home/stevew/CODA/lib/python2.7/site-packages')
sys.path.append('/data/Personal/stevew/AEOLUS/CODA/lib/python3.7/site-packages')
import coda

import matplotlib.pyplot as plt
import glob, ast, datetime

files = open('flist_adm.txt').read().split()
print(files)

nfile  = len(files)
allobs = 0
wind_err_thresh = 50
check_wind_err = True
rink's avatar
rink committed

f66=open('./ray1day.out', 'w+')
f60=open('./mie1day.out', 'w+')

# ------- loop over data files ------

for n, filename in enumerate(files):
  print('Reading file: %s' %filename)

  product = coda.open(filename)

### ------- Mie wind profile ---------
### ------- Mie wind profile ---------

# print("Individual Mie HLOS wind points")
# latitude  = coda.fetch(product, 'mie_geolocation',-1, 'windresult_geolocation/latitude_cog')
# longitude = coda.fetch(product, 'mie_geolocation',-1, 'windresult_geolocation/longitude_cog')
# mie_alt in (m)
  mie_alt0  = coda.fetch(product, 'mie_geolocation',-1, 'windresult_geolocation/altitude_vcog')
  mie_altt  = coda.fetch(product, 'mie_geolocation',-1, 'windresult_geolocation/altitude_top')
  mie_altb  = coda.fetch(product, 'mie_geolocation',-1, 'windresult_geolocation/altitude_bottom')
  mie_azimuth0 = coda.fetch(product, 'mie_geolocation',-1, 'windresult_geolocation/los_azimuth')

  mie_length0 = coda.fetch(product, 'mie_hloswind',-1, 'windresult/integration_length')
  mie_valid0  = coda.fetch(product, 'mie_hloswind',-1, 'windresult/validity_flag')
  mie_wind0 = coda.fetch(product, 'mie_hloswind',-1, 'windresult/mie_wind_velocity')

rink's avatar
rink committed
  # new field for Mie scattering ratio
  # sr0 = coda.fetch(product, 'mie_wind_prod_conf_data', -1, 'mie_wind_qc', 'fitting_mie_sr')

rink's avatar
rink committed
	#klukens
#  mie_pppp0  = coda.fetch(product, 'mie_hloswind',-1, 'windresult/reference_pressure')
#  mie_pppp0  = coda.get_field_names(product,'mie_geolocation[0]/windresult_geolocation')
#  mie_pppp0  = coda.get_field_names(product,'mie_hloswind[0]/windresult')
#  print "mie_pppp0 fetch all = ",mie_pppp0

  mie_err0  = coda.fetch(product, 'mie_wind_prod_conf_data',-1, 'mie_wind_qc/hlos_error_estimate')
#  mie_snr0       = coda.fetch(product, 'mie_wind_prod_conf_data',-1, 'mie_wind_qc/mie_snr')

# -------  Rayleigh profiles  ---------
# -------  Rayleigh profiles  ---------

#  print("Individual Rayleight HLOS wind points")
  rayleigh_azimuth0 = coda.fetch(product, 'rayleigh_geolocation',-1, 'windresult_geolocation/los_azimuth')

# latitude      = coda.fetch(product, 'rayleigh_geolocation',-1, 'windresult_geolocation/latitude_cog')
# longitude     = coda.fetch(product, 'rayleigh_geolocation',-1, 'windresult_geolocation/longitude_cog')

  rayleigh_alt0 = coda.fetch(product, 'rayleigh_geolocation',-1, 'windresult_geolocation/altitude_vcog')
  rayleigh_altt = coda.fetch(product, 'rayleigh_geolocation',-1, 'windresult_geolocation/altitude_top')
  rayleigh_altb = coda.fetch(product, 'rayleigh_geolocation',-1, 'windresult_geolocation/altitude_bottom')

  rayleigh_wind0 = coda.fetch(product, 'rayleigh_hloswind',-1, 'windresult/rayleigh_wind_velocity')

# ----- rayleigh data is from top (26.5km) --> bottom (24 levels) ---------
#     wind_err in (m/s)

  rayleigh_err0  = coda.fetch(product, 'rayleigh_wind_prod_conf_data',-1, 'rayleigh_wind_qc/hlos_error_estimate')
  rayleigh_sratio0 = coda.fetch(product, 'rayleigh_wind_prod_conf_data',-1, 'rayleigh_wind_qc/scattering_ratio')
  rayleigh_wind_to_T  = coda.fetch(product, 'rayleigh_hloswind',-1, 'windresult/rayleigh_wind_to_temperature')
  rayleigh_wind_to_P  = coda.fetch(product, 'rayleigh_hloswind',-1, 'windresult/rayleigh_wind_to_pressure')

  rayleigh_temp  = coda.fetch(product, 'rayleigh_hloswind',-1, 'windresult/reference_temperature')
  rayleigh_pppp  = coda.fetch(product, 'rayleigh_hloswind',-1, 'windresult/reference_pressure')

  ray_length0 = coda.fetch(product, 'rayleigh_hloswind',-1, 'windresult/integration_length')
  rayleigh_valid0 = coda.fetch(product, 'rayleigh_hloswind',-1, 'windresult/validity_flag')
# print(rayleigh_wind0.shape)


#=================================================
## ---------- Mie profile information ------------
#=================================================
  print("Mie HLOS wind profiles")

  rid = coda.fetch(product, 'mie_profile',-1, 'l2b_wind_profiles/wind_result_id_number')
  rid = vstack(rid)
# print(rid.shape)

  typ_id = coda.fetch(product, 'mie_profile',-1, 'l2b_wind_profiles/Obs_Type')

  nprofm = rid.shape[0]
  nlevm  = rid.shape[1]

# -----------------  the data is from top --> bottom -------------
#   NOTE: i = 0 - nprof-1 in the xrange FUNTION of PYTHON 
#-----------------------------------------------------------------

  mie_azimuth = zeros(rid.shape)
  mie_err = zeros(rid.shape)
  mie_hhh = zeros(rid.shape)
  mie_hht = zeros(rid.shape)
  mie_hhb = zeros(rid.shape)
  mie_wind = zeros(rid.shape)
rink's avatar
rink committed
#  mie_pppp    = zeros(rid.shape)	#klukens
  mie_valid = zeros(rid.shape)
  mie_length = zeros(rid.shape)
  mie_sratio = zeros(rid.shape)
rink's avatar
rink committed
#  mie_snr     = zeros(rid.shape)

#  wind m/s, 

  mie_wind[rid != 0] = mie_wind0[rid[rid != 0]-1]*0.01
  mie_azimuth[rid != 0] = mie_azimuth0[rid[rid != 0]-1]*1.0
rink's avatar
rink committed

  mie_valid[rid != 0] = mie_valid0[rid[rid != 0]-1]
rink's avatar
rink committed
#     length in km output
  mie_length[rid != 0] = mie_length0[rid[rid != 0]-1]*0.001
rink's avatar
rink committed

#  mie_pppp[rid !=0] = mie_pppp0[rid[rid !=0]-1]*0.01	#klukens

#  wind error m/s
  mie_err[rid != 0] = mie_err0[rid[rid != 0]-1]*1.0
rink's avatar
rink committed
#  mie_snr    [rid !=0] = mie_snr0     [rid[rid !=0]-1]*1.0

#    height in (km)
#    add 250m shift to the height for this version of L2B data
  mie_hhh[rid != 0] = mie_alt0[rid[rid != 0]-1] * 0.001+0.25
rink's avatar
rink committed

  mie_hht[rid != 0] = mie_altt[rid[rid != 0]-1] * 0.001 + 0.25
  mie_hhb[rid != 0] = mie_altb[rid[rid != 0]-1] * 0.001 + 0.25
rink's avatar
rink committed

  latrid = coda.fetch(product, 'mie_profile',-1, 'Profile_lat_average')
  lonrid = coda.fetch(product, 'mie_profile',-1, 'Profile_lon_average')
  sstime = coda.fetch(product, 'mie_profile',-1, 'Profile_DateTime_Average')
rink's avatar
rink committed

  for i in range(nprofm):
     timestep = datetime.datetime(2000, 1, 1)+datetime.timedelta(seconds=sstime[i])
     yyyy = timestep.strftime('%Y')
     mm = timestep.strftime('%m')
     dd = timestep.strftime('%d')
     hh = timestep.strftime('%H')
     min = timestep.strftime('%M')
     sec = timestep.strftime('%S')	 # klukens
rink's avatar
rink committed

     if check_wind_err:
        totlevs = numpy.sum(logical_and(mie_valid[i, :] > 0, logical_and(rid[i, :] > 0, mie_err[i, :] < wind_err_thresh)))
     else:
        totlevs = numpy.sum(logical_and(mie_valid[i, :] > 0, rid[i, :] > 0))
rink's avatar
rink committed

     if totlevs > 0:
      if typ_id[i] == 1:  # cloudy type Mie winds
rink's avatar
rink committed

       print(yyyy, mm, dd, hh, min, sec, '%7.2f %7.2f %2i' % (float(lonrid[i]), float(latrid[i]), int(totlevs)), file=f60)
rink's avatar
rink committed

       if check_wind_err:
           for m in range(nlevm):
    #       keep consistent with the lines of totlevs above !!!
            if rid[i, m] > 0:
             if mie_err[i, m] < wind_err_thresh:
              if mie_valid[i, m] > 0.0:
               print('%2i %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f' % (int(m+1),
                 mie_hhh[i,m], mie_hht[i,m], mie_hhb[i,m], mie_err[i,m],
                 mie_azimuth[i,m], mie_wind[i,m], mie_length[i,m]), file=f60)
       else:
           for m in range(nlevm):
            if rid[i, m] > 0:
              if mie_valid[i, m] > 0.0:
                print('%2i %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f' % (int(m+1),
                   mie_hhh[i,m], mie_hht[i,m], mie_hhb[i,m], mie_err[i,m],
                      mie_azimuth[i,m], mie_wind[i,m], mie_length[i,m]), file=f60)
rink's avatar
rink committed


# -----------------------------------------------
#          Rayleigh profile information 
# -----------------------------------------------

  print("Rayleigh HLOS wind profiles")
  rid = coda.fetch(product, 'rayleigh_profile',-1, 'l2b_wind_profiles/wind_result_id_number')
  rid = vstack(rid)

#==========================================
# tpye =1, cloudy, =2 clear
#==========================================
  typ_id = coda.fetch(product, 'rayleigh_profile',-1, 'l2b_wind_profiles/Obs_Type')

#    profile number of Rayleigh winds profiles in this orbit
  nprof = rid.shape[0]
  nlev  = rid.shape[1]
# print(rid.shape)

# -----------------  the data is from top --> bottom -------------
#   NOTE: i = 0 - nprof-1 in the xrange FUNTION of PYTHON 
#-----------------------------------------------------------------

  ray_azimuth = zeros(rid.shape)
  ray_err = zeros(rid.shape)
  wind_sens_T = zeros(rid.shape)
  wind_sens_P = zeros(rid.shape)
  ray_length = zeros(rid.shape)
  ray_valid = zeros(rid.shape)
  ref_temp = zeros(rid.shape)
  ref_pppp = zeros(rid.shape)
rink's avatar
rink committed
  ray_hhh = zeros(rid.shape)
  ray_hht = zeros(rid.shape)
  ray_hhb = zeros(rid.shape)
  ray_wind = zeros(rid.shape)
  ray_sratio = zeros(rid.shape)
rink's avatar
rink committed

  ray_wind[rid != 0] = rayleigh_wind0[rid[rid != 0]-1]*0.01
  ray_azimuth[rid != 0] = rayleigh_azimuth0[rid[rid != 0]-1]*1.0
  ray_sratio [rid != 0] = rayleigh_sratio0[rid[rid != 0]-1]*1.0
rink's avatar
rink committed

#  print(rayleigh_wind0.shape)
#  print(rid.shape)
#  print(rid)
#  from 2D OBS fortran index rid (1-nnn), to index 0-(nnn-1) of 1D mie_wind0
#

#  wind error m/s
  ray_err[rid != 0] = rayleigh_err0[rid[rid != 0]-1]*1.0
rink's avatar
rink committed

#   m/s/K
  wind_sens_T[rid != 0] = rayleigh_wind_to_T[rid[rid != 0]-1]*0.01
rink's avatar
rink committed
# K
  ref_temp[rid != 0] = rayleigh_temp[rid[rid != 0]-1]
  ref_pppp[rid != 0] = rayleigh_pppp[rid[rid != 0]-1]*0.01
rink's avatar
rink committed

# cm/s/hPa 
  wind_sens_P[rid != 0] = rayleigh_wind_to_P[rid[rid !=0]-1] * 1.0e-4
  ray_length[rid != 0] = ray_length0[rid[rid != 0]-1] * 0.001
  ray_valid[rid != 0] = rayleigh_valid0[rid[rid != 0]-1]
rink's avatar
rink committed

#    height in (km)
#    add 250m shift to the height for this version of L2B data
  ray_hhh[rid != 0] = rayleigh_alt0[rid[rid != 0]-1] * 0.001 + 0.25
  ray_hht[rid != 0] = rayleigh_altt[rid[rid != 0]-1] * 0.001 + 0.25
  ray_hhb[rid != 0] = rayleigh_altb[rid[rid != 0]-1] * 0.001 + 0.25
rink's avatar
rink committed

  latrid =coda.fetch(product, 'rayleigh_profile',-1, 'Profile_lat_average')
  lonrid =coda.fetch(product, 'rayleigh_profile',-1, 'Profile_lon_average')
  sstime =coda.fetch(product, 'rayleigh_profile',-1, 'Profile_DateTime_Average')

  for i in range(nprof):
     timestep = datetime.datetime(2000, 1, 1) + datetime.timedelta(seconds=sstime[i])
     yyyy = timestep.strftime('%Y')
     mm   = timestep.strftime('%m')
     dd   = timestep.strftime('%d')
     hh   = timestep.strftime('%H')
     min  = timestep.strftime('%M')
     sec  = timestep.strftime('%S')	#klukens

     if check_wind_err:
         totlevs = numpy.sum(logical_and(ray_valid[i, :] > 0, logical_and(rid[i, :] > 0, ray_err[i, :] < wind_err_thresh)))
     else:
         totlevs = numpy.sum(logical_and(ray_valid[i, :] > 0, rid[i, :] > 0))
rink's avatar
rink committed
#  for clear sky Rayleigh winds ----------
     if totlevs > 0:
      if typ_id[i] == 2:

       print(yyyy, mm, dd, hh, min, sec, '%7.2f %7.2f %2i' % (float(lonrid[i]), float(latrid[i]), int(totlevs)), file=f66)
rink's avatar
rink committed

       if check_wind_err:
           for m in range(nlev):
    #       keep consistent with the lines of totlevs above !!!
            if rid[i, m] > 0:
              if ray_err[i, m] < wind_err_thresh:
               if ray_valid[i, m] > 0.0:
                print('%2i %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f'
                  % (int(m+1), ray_hhh[i,m], ray_hht[i,m], ray_hhb[i,m],
                  ray_err[i,m], ray_azimuth[i,m], ray_wind[i,m],
                  ref_temp[i,m]*0.01, ref_pppp[i,m], wind_sens_T[i,m],
                  wind_sens_P[i,m], ray_sratio [i,m], ray_length[i,m]), file=f66)
       else:
           for m in range(nlev):
               if rid[i, m] > 0:
                    if ray_valid[i, m] > 0.0:
                        print('%2i %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f'
                           % (int(m + 1), ray_hhh[i, m], ray_hht[i, m], ray_hhb[i, m],
                                    ray_err[i, m], ray_azimuth[i, m], ray_wind[i, m],
                                    ref_temp[i, m] * 0.01, ref_pppp[i, m], wind_sens_T[i, m],
                                    wind_sens_P[i, m], ray_sratio[i, m], ray_length[i, m]), file=f66)
rink's avatar
rink committed

  coda.close(product)

print('Finished data. Processed, file loop')
exit()