Newer
Older
import numpy as np
from util.setup import home_dir
from scipy.interpolate import interp2d
from scipy import linalg
from scipy.spatial import KDTree
from sklearn.neighbors import BallTree
from util.util import haversine_np
class MyGenericException(Exception):
def __init__(self, message):
self.message = message
# For nearest neighbor/interpolation of a function whose domain is a geostationary satellite fixed grid.
# This is a utility wrapper for sklearn.neighbors.BallTree adapted for 2D manifold (Longitude, Latitude).
class LonLatGrid:
# grd_lons, grd_lats: the longitude, latitude of each grid point (must be 2D grids), must have same shape
# Incoming longitude must be in range: 0 - 360 degrees
# Can have NaN for off Earth grid points (these are handled internally).
# closeness_threshold (m): if < distance of located_point to target, return off grid
# reduce: resolution blow down factor
# leaf_size: Number of points at which to switch to brute-force, default=40
def __init__(self, grd_lons, grd_lats, closeness_threshold=2000, reduce=1, leaf_size=40):
if grd_lons.shape != grd_lats.shape:
raise MyGenericException('incoming lons,lats must have same shape')
self.grd_lons = grd_lons
self.grd_lats = grd_lats
self.grd_lons = grd_lons[::reduce, ::reduce]
self.grd_lats = grd_lats[::reduce, ::reduce]
self.shape = self.grd_lons.shape
self.lenx = self.shape[1]
self.leny = self.shape[0]
self.fnc_dct = {}
self.x = np.zeros(9, np.float32)
self.y = np.zeros(9, np.float32)
self.z = np.zeros(9, np.float32)
flons = self.grd_lons.flatten()
flats = self.grd_lats.flatten()
keep = np.invert(np.isnan(flons))
self.map_indexes = (np.arange(self.grd_lons.size))[keep]
flons = flons[keep]
flats = flats[keep]
self.lon_lo, self.lon_hi = flons.min(), flons.max()
self.lat_lo, self.lat_hi = flats.min(), flats.max()
self.kd = BallTree(np.deg2rad(points), leaf_size=leaf_size, metric='haversine')
# locate nearest neighbor for incoming target in earth coordinates (Should not have NaNs)
# lons, lats can be flat or 2D
# incoming longitude must be in range: 0 - 360 degrees
# returns NN indexes relative to the grid determined in the ctr.
if lons.shape != lats.shape:
raise MyGenericException('incoming lons,lats must have same shape')
if len(lons) == 0 or len(lats) == 0:
return None, None
lons = lons.flatten()
lats = lats.flatten()
xy = np.stack([lons, lats], axis=1)
# Assumes nn for a query pont returned in order of increasing distance
dist, indices = self.kd.query(np.deg2rad(xy), k=1)
dist = dist[:, 0]
indices = indices[:, 0]
valid = (indices < self.map_indexes.size) & (dist < self.closeness_threshold)
indices = indices[valid]
return self.map_indexes[indices], indices
def earth_to_lc_s(self, lons, lats):
if lons.shape != lats.shape:
raise MyGenericException('incoming lons,lats must have same shape')
if len(lons) == 0 or len(lats) == 0:
return None, None
lons = lons.flatten()
lats = lats.flatten()
xy = np.stack([lons, lats], axis=1)
# Assumes nn for a query pont returned in order of increasing distance
dist, indices = self.kd.query(np.deg2rad(xy), k=1)
dist = dist[:, 0]
indices = indices[:, 0]
dist *= 6370000 # convert unit radius to meters
valid = (indices < self.map_indexes.size) & (dist < self.closeness_threshold)
indices = np.where(valid, indices, -1)
ll = np.where(indices >= 0, (indices / self.lenx).astype(np.int32), indices)
cc = np.where(indices >= 0, indices % self.lenx, indices)
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# bi-linear interpolation of a function on the grid, the range of which is grd_zvals for target lons,lats.
# returns the interpolated values at each target point.
# target lons, lats should not have NaNs, and lons must be in range 0 - 360 degrees
def interp(self, grid_zvals, lons, lats):
if grid_zvals.shape != self.shape:
raise MyGenericException('range and domain must have same 2D shape')
if lons.shape != lats.shape:
raise MyGenericException('incoming lons, lats must have same shape')
abs_idxs, rel_idxs = self.value_to_index(lons, lats)
x = np.zeros(9, np.float32)
y = np.zeros(9, np.float32)
z = np.zeros(9, np.float32)
lons = lons.flatten()
lats = lats.flatten()
outv = np.zeros(lons.size, np.float32)
outv.fill(np.nan)
for k in range(len(abs_idxs)):
idx = abs_idxs[k]
lon = lons[k]
lat = lats[k]
fnc = self.fnc_dct.get(idx)
if fnc is None:
gj = int(idx / self.lenx)
gi = int(idx % self.lenx)
L = gi-1
R = gi+1
D = gj-1
U = gj+1
x[0] = self.grd_lons[D, L]
y[0] = self.grd_lats[D, L]
z[0] = grid_zvals[D, L]
x[1] = self.grd_lons[D, gi]
y[1] = self.grd_lats[D, gi]
z[1] = grid_zvals[D, gi]
x[2] = self.grd_lons[D, R]
y[2] = self.grd_lats[D, R]
z[2] = grid_zvals[D, R]
x[3] = self.grd_lons[gj, L]
y[3] = self.grd_lats[gj, L]
z[3] = grid_zvals[gj, L]
x[4] = self.grd_lons[gj, gi]
y[4] = self.grd_lats[gj, gi]
z[4] = grid_zvals[gj, gi]
x[5] = self.grd_lons[gj, R]
y[5] = self.grd_lats[gj, R]
z[5] = grid_zvals[gj, R]
x[6] = self.grd_lons[U, L]
y[6] = self.grd_lats[U, L]
z[6] = grid_zvals[U, L]
x[7] = self.grd_lons[U, gi]
y[7] = self.grd_lats[U, gi]
z[7] = grid_zvals[U, gi]
x[8] = self.grd_lons[U, R]
y[8] = self.grd_lats[U, R]
z[8] = grid_zvals[U, R]
if np.isnan(x).sum() > 0:
continue
if np.isnan(y).sum() > 0:
continue
fnc = interp2d(x, y, z, copy=False)
self.fnc_dct[idx] = fnc
outv[k] = fnc(lon, lat)
return outv
return (self.lon_lo < lon < self.lon_hi) & (self.lat_lo < lat < self.lat_hi)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
DEG_TO_RAD = np.pi/180.0;
RAD_TO_DEG = 180.0/np.pi;
r_pol = 6356.5838 # km
r_eq = 6378.1690 # km
# AHI -------------------------------
# h = 42164.0 # barycentric height, km
# sub_lon = 140.7
# sub_lon *= DEG_TO_RAD
# scan_geom = 'GEOS'
# signs modified from static nav file to work with ABI FGF code
# CFAC = 5.588799E-05
# LFAC = -5.588799E-05
# COFF = -0.1537199
# LOFF = 0.1537199
# computed from static nav file (lon, lat) grid
# Note 0-based to the pixel center
# CFAC = 5.58924125e-05
# LFAC = -5.58810490e-05
# COFF = -1.53678977e-01
# LOFF = 1.53644345e-01
# GOES ------------------------------
h = 42164.16 # barycentric height, km
scan_geom = 'GOES'
sub_lon = -75.0
sub_lon *= DEG_TO_RAD
# official for FD
CFAC = 5.6E-05
LFAC = -5.6E-05
COFF = -0.151844
LOFF = 0.151844
# official for CONUS
#CFAC = 5.6E-05
#COFF = -0.101332
#LFAC = -5.6E-05
#LOFF = 0.128212
# computed for CLAVRx FD
#CFAC = 5.60016368e-05
#LFAC = -5.59941969e-05
#COFF = -1.51780260e-01
#LOFF = 1.51773560e-01
# 65536 = 2^16
def earth_to_sat(geographic_lon, geographic_lat):
geographic_lon *= DEG_TO_RAD
geographic_lat *= DEG_TO_RAD
geocentric_lat = np.arctan(((r_pol*r_pol)/(r_eq*r_eq))*np.tan(geographic_lat))
r_earth = r_pol / np.sqrt(1.0 - ((r_eq * r_eq - r_pol * r_pol) / (r_eq * r_eq)) * np.cos(geocentric_lat) * np.cos(geocentric_lat))
r_1 = h - r_earth * np.cos(geocentric_lat) * np.cos(geographic_lon - sub_lon)
r_2 = -r_earth * np.cos(geocentric_lat) * np.sin(geographic_lon - sub_lon)
r_3 = r_earth * np.sin(geocentric_lat)
if r_1 > h:
return np.nan, np.nan
if scan_geom == 'GEOS':
lamda_sat = np.arctan(-r_2/r_1)
theta_sat = np.arcsin(r_3/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
elif scan_geom == 'GOES':
lamda_sat = np.arcsin(-r_2/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
theta_sat = np.arctan(r_3/r_1)
return lamda_sat, theta_sat
def earth_to_sat_s(geographic_lon, geographic_lat):
geographic_lon = geographic_lon * DEG_TO_RAD
geographic_lat = geographic_lat * DEG_TO_RAD
geocentric_lat = np.arctan(((r_pol*r_pol)/(r_eq*r_eq))*np.tan(geographic_lat))
r_earth = r_pol / np.sqrt(1.0 - ((r_eq * r_eq - r_pol * r_pol) / (r_eq * r_eq)) * (np.cos(geocentric_lat))**2)
r_1 = h - r_earth * np.cos(geocentric_lat) * np.cos(geographic_lon - sub_lon)
r_2 = -r_earth * np.cos(geocentric_lat) * np.sin(geographic_lon - sub_lon)
r_3 = r_earth * np.sin(geocentric_lat)
if scan_geom == 'GEOS':
lamda_sat = np.arctan(-r_2/r_1)
theta_sat = np.arcsin(r_3/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
elif scan_geom == 'GOES':
lamda_sat = np.arcsin(-r_2/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
theta_sat = np.arctan(r_3/r_1)
np.where(r_1 > h, lamda_sat == np.nan, lamda_sat)
np.where(r_1 > h, theta_sat == np.nan, theta_sat)
return lamda_sat, theta_sat
# def earth_to_sat_s(geographic_lons, geographic_lats):
# lambdas = []
# thetas = []
#
# for i in range(len(geographic_lons)):
# l, t = earth_to_sat(geographic_lons[i], geographic_lats[i])
# lambdas.append(l)
# thetas.append(t)
#
# return lambdas, thetas
def sat_to_lc(lamda, theta):
# c = COFF + np.rint(lamda * (1/np.power(2, 16)) * CFAC)
# l = LOFF + np.rint(theta * (1/np.power(2, 16)) * LFAC)
# (float(2 ** 16) * (float(lc) - off)) / float(fac) * DEG_TO_RAD
cc = (lamda - COFF) / CFAC
ll = (theta - LOFF) / LFAC
cc = np.floor(cc + 0.5)
ll = np.floor(ll + 0.5)
# cc = int(cc)
# ll = int(ll)
cc = cc.astype(np.int32)
ll = ll.astype(np.int32)
return cc, ll
def test(flons, flats):
fflons = flons.flatten()
fflats = flats.flatten()
num = len(fflons)
for i in range(0, num-1, 50000):
lon = fflons[i]
lat = fflats[i]
if lon == -999.0:
continue
c, l = earth_to_lc(lon, lat)
print(lon, flons[l,c])
print(lat, flats[l,c])
print(haversine_np(lon, lat, flons[l,c], flats[l,c]))
print('-----------------------')
def earth_to_lc(lon, lat):
lamda, theta = earth_to_sat(lon, lat)
if np.isnan(lamda):
return None, None
cc, ll = sat_to_lc(lamda, theta)
return cc, ll
# def earth_to_lc_s(lons, lats):
# num = lons.shape[0]
# cc_s = []
# ll_s = []
# for i in range(num):
# cc, ll = earth_to_lc(lons[i], lats[i])
# if cc is None:
# cc_s.append(-1)
# ll_s.append(-1)
# else:
# cc_s.append(cc)
# ll_s.append(ll)
#
# return cc_s, ll_s
def earth_to_lc_s(lons, lats):
lamda, theta = earth_to_sat_s(lons, lats)
cc, ll = sat_to_lc(lamda, theta)
np.where(np.isnan(cc), cc == -1, cc)
np.where(np.isnan(ll), ll == -1, ll)
return cc, ll
def earth_to_indexs(lons, lats, len_x):
num = lons.shape[0]
idxs = []
for i in range(num):
cc, ll = earth_to_lc(lons[i], lats[i])
if cc is None:
idxs.append(-1)
else:
idx = ll * len_x + cc
idxs.append(idx)
idxs = np.array(idxs)
return idxs
def compute_scale_offset(lon_a, lat_a, col_a, line_a, lon_b, lat_b, col_b, line_b):
lamda_a, theta_a = earth_to_sat(lon_a, lat_a)
lamda_b, theta_b = earth_to_sat(lon_b, lat_b)
# To setup the problem below
# (CFAC * col_a) + COFF = lamda_a
# (CFAC * col_b) + COFF = lamda_b
# (LFAC * line_a) + LOFF = theta_a
# (LFAC * line_b) + LOFF = theta_b
a = np.array([[col_a, 1], [col_b, 1]])
b = np.array([lamda_a, lamda_b])
x = linalg.solve(a, b)
print(x)
a = np.array([[line_a, 1], [line_b, 1]])
b = np.array([theta_a, theta_b])
x = linalg.solve(a, b)
print(x)