Newer
Older
import numpy as np
from scipy import linalg
from util.util import haversine_np
DEG_TO_RAD = np.pi/180.0;
RAD_TO_DEG = 180.0/np.pi;
r_pol = 6356.5838 # km
r_eq = 6378.1690 # km
# AHI -------------------------------
# h = 42164.0 # barycentric height, km
# sub_lon = 140.7
# sub_lon *= DEG_TO_RAD
# scan_geom = 'GEOS'
# signs modified from static nav file to work with ABI FGF code
# CFAC = 5.588799E-05
# LFAC = -5.588799E-05
# COFF = -0.1537199
# LOFF = 0.1537199
# computed from static nav file (lon, lat) grid
# Note 0-based to the pixel center
# CFAC = 5.58924125e-05
# LFAC = -5.58810490e-05
# COFF = -1.53678977e-01
# LOFF = 1.53644345e-01
# GOES ------------------------------
h = 42164.16 # barycentric height, km
invf = 298.2572221 # inverse flattening
f = 1.0/invf
fp = 1.0/((1.0-f)*(1.0-f))
d = h*h - r_eq*r_eq
scan_geom = 'GOES'
sub_lon = -75.0
sub_lon *= DEG_TO_RAD
# official for FD
CFAC = 5.6E-05
LFAC = -5.6E-05
COFF = -0.151844
LOFF = 0.151844
# official for CONUS
#CFAC = 5.6E-05
#COFF = -0.101332
#LFAC = -5.6E-05
#LOFF = 0.128212
# computed for CLAVRx FD
#CFAC = 5.60016368e-05
#LFAC = -5.59941969e-05
#COFF = -1.51780260e-01
#LOFF = 1.51773560e-01
# 65536 = 2^16
theta_geos = np.arcsin(np.sin(theta_goes) * np.cos(lamda_goes))
lamda_geos = np.arctan(np.tan(lamda_goes) / np.cos(theta_goes))
class GEOSNavigation:
def __init__(self, sub_lon=-75.0, barycentric_height=42164.16, scan_geom='GOES', CFAC=5.6E-05, LFAC=-5.6E-05, COFF=-0.151844, LOFF=0.151844, num_elems=5424, num_lines=5424):
self.sub_lon = sub_lon * DEG_TO_RAD
self.h = barycentric_height
self.scan_geom = scan_geom
self.CFAC = CFAC
self.LFAC = LFAC
self.COFF = COFF
self.LOFF = LOFF
self.num_lines = num_lines
self.num_elems = num_elems
def earth_to_sat(self, geographic_lon, geographic_lat):
geographic_lon *= DEG_TO_RAD
geographic_lat *= DEG_TO_RAD
geocentric_lat = np.arctan(((r_pol*r_pol)/(r_eq*r_eq))*np.tan(geographic_lat))
r_earth = r_pol / np.sqrt(1.0 - ((r_eq * r_eq - r_pol * r_pol) / (r_eq * r_eq)) * np.cos(geocentric_lat) * np.cos(geocentric_lat))
r_1 = self.h - r_earth * np.cos(geocentric_lat) * np.cos(geographic_lon - self.sub_lon)
r_2 = -r_earth * np.cos(geocentric_lat) * np.sin(geographic_lon - self.sub_lon)
r_3 = r_earth * np.sin(geocentric_lat)
return np.nan, np.nan
if self.scan_geom == 'GEOS':
lamda_sat = np.arctan(-r_2/r_1)
theta_sat = np.arcsin(r_3/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
elif self.scan_geom == 'GOES':
lamda_sat = np.arcsin(-r_2/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
theta_sat = np.arctan(r_3/r_1)
return lamda_sat, theta_sat
def earth_to_sat_s(self, geographic_lon, geographic_lat):
geographic_lon = geographic_lon * DEG_TO_RAD
geographic_lat = geographic_lat * DEG_TO_RAD
geocentric_lat = np.arctan(((r_pol*r_pol)/(r_eq*r_eq))*np.tan(geographic_lat))
r_earth = r_pol / np.sqrt(1.0 - ((r_eq * r_eq - r_pol * r_pol) / (r_eq * r_eq)) * (np.cos(geocentric_lat))**2)
r_1 = self.h - r_earth * np.cos(geocentric_lat) * np.cos(geographic_lon - self.sub_lon)
r_2 = -r_earth * np.cos(geocentric_lat) * np.sin(geographic_lon - self.sub_lon)
r_3 = r_earth * np.sin(geocentric_lat)
if self.scan_geom == 'GEOS':
lamda_sat = np.arctan(-r_2/r_1)
theta_sat = np.arcsin(r_3/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
elif self.scan_geom == 'GOES':
lamda_sat = np.arcsin(-r_2/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
theta_sat = np.arctan(r_3/r_1)
lamda_sat = np.where(r > self.h, np.nan, lamda_sat)
theta_sat = np.where(r > self.h, np.nan, theta_sat)
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
return lamda_sat, theta_sat
def sat_to_lc(self, lamda, theta):
# c = COFF + np.rint(lamda * (1/np.power(2, 16)) * CFAC)
# l = LOFF + np.rint(theta * (1/np.power(2, 16)) * LFAC)
# (float(2 ** 16) * (float(lc) - off)) / float(fac) * DEG_TO_RAD
cc = (lamda - self.COFF) / self.CFAC
ll = (theta - self.LOFF) / self.LFAC
cc = np.floor(cc + 0.5)
ll = np.floor(ll + 0.5)
cc = cc.astype(np.int32)
ll = ll.astype(np.int32)
return cc, ll
def earth_to_lc(self, lon, lat):
lamda, theta = self.earth_to_sat(lon, lat)
if np.isnan(lamda):
return None, None
cc, ll = self.sat_to_lc(lamda, theta)
return cc, ll
def earth_to_lc_s(self, lons, lats):
lamda, theta = self.earth_to_sat_s(lons, lats)
cc, ll = self.sat_to_lc(lamda, theta)
cc = np.where(np.isnan(lamda), -1, cc)
cc = np.where(cc < 0, -1, cc)
cc = np.where(cc >= self.num_elems, -1, cc)
ll = np.where(np.isnan(theta), -1, ll)
ll = np.where(ll < 0, -1, ll)
ll = np.where(ll >= self.num_lines, -1, ll)
cc[ll == -1] = -1
ll[cc == -1] = -1
x = cc * self.CFAC + self.COFF
y = ll * self.LFAC + self.LOFF
lon, lat = self.sat_to_earth_s(x, y)
return lon, lat
def earth_to_indexs(self, lons, lats, len_x):
num = lons.shape[0]
idxs = []
for i in range(num):
cc, ll = self.earth_to_lc(lons[i], lats[i])
if cc is None:
idxs.append(-1)
else:
idx = ll * len_x + cc
idxs.append(idx)
idxs = np.array(idxs)
return idxs
def sat_to_earth_s(self, x, y):
if self.scan_geom == 'GOES':
x, y = goes_to_geos(x, y)
c1 = (h * np.cos(x) * np.cos(y)) * (h * np.cos(x) * np.cos(y))
c2 = (np.cos(y) * np.cos(y) + fp * np.sin(y) * np.sin(y)) * d
c1 = np.where(c1 < c2, np.nan, c1)
c2 = np.where(c1 < c2, np.nan, c2)
s_d = np.sqrt(c1 - c2)
s_n = (h * np.cos(x) * np.cos(y) - s_d) / (np.cos(y) * np.cos(y) + fp * np.sin(y) * np.sin(y))
s_1 = h - s_n * np.cos(x) * np.cos(y)
s_2 = s_n * np.sin(x) * np.cos(y)
s_3 = s_n * np.sin(y)
s_xy = np.sqrt(s_1 * s_1 + s_2 * s_2)
geographic_lon = np.arctan(s_2 / s_1) + self.sub_lon
geographic_lat = np.arctan(fp * (s_3 / s_xy))
geographic_lon *= RAD_TO_DEG
geographic_lat *= RAD_TO_DEG
return geographic_lon, geographic_lat
def sat_to_earth(self, x, y):
if self.scan_geom == 'GOES':
x, y = goes_to_geos(x, y)
c1 = (h * np.cos(x) * np.cos(y)) * (h * np.cos(x) * np.cos(y))
c2 = (np.cos(y) * np.cos(y) + fp * np.sin(y) * np.sin(y)) * d
if c1 < c2:
return np.nan, np.nan
s_d = np.sqrt(c1 - c2)
s_n = (h * np.cos(x) * np.cos(y) - s_d) / (np.cos(y) * np.cos(y) + fp * np.sin(y) * np.sin(y))
s_1 = h - s_n * np.cos(x) * np.cos(y)
s_2 = s_n * np.sin(x) * np.cos(y)
s_3 = s_n * np.sin(y)
s_xy = np.sqrt(s_1 * s_1 + s_2 * s_2)
geographic_lon = np.arctan(s_2 / s_1) + self.sub_lon
geographic_lat = np.arctan(fp * (s_3 / s_xy))
geographic_lon *= RAD_TO_DEG
geographic_lat *= RAD_TO_DEG
return geographic_lon, geographic_lat
if satellite == 'GOES16':
if domain == 'FD':
nav = GEOSNavigation()
elif domain == 'CONUS':
nav = GEOSNavigation(sub_lon=-75.0, CFAC=5.6E-05, COFF=-0.101332,
LFAC=-5.6E-05, LOFF=0.128212, num_elems=2500, num_lines=1500)
elif satellite == 'GOES17':
if domain == 'FD':
nav = GEOSNavigation(sub_lon=-137.0)
elif domain == 'CONUS':
pass
elif satellite == 'H08':
nav = GEOSNavigation(sub_lon=140.7, barycentric_height=42164.0, scan_geom='GEOS',
CFAC=5.58879902955962e-05, LFAC=-5.58879902955962e-05,
COFF=-0.153719917308037, LOFF=0.153719917308037, num_elems=5500, num_lines=5500)
elif satellite == 'H09':
nav = GEOSNavigation(sub_lon=140.7, barycentric_height=42164.0, scan_geom='GEOS',
CFAC=5.58879902955962e-05, LFAC=-5.58879902955962e-05,
COFF=-0.153719917308037, LOFF=0.153719917308037, num_elems=5500, num_lines=5500)
num_elems = len(cc)
num_lines = len(ll)
cc = np.array(cc)
ll = np.array(ll)
x_rad = cc * nav.CFAC + nav.COFF
y_rad = ll * nav.LFAC + nav.LOFF
ll, cc = np.meshgrid(ll, cc, indexing='ij')
cc = cc.flatten()
ll = ll.flatten()
lon_s, lat_s = nav.lc_to_earth(cc, ll)
lons_2d = lon_s.reshape((num_lines, num_elems))
lats_2d = lat_s.reshape((num_lines, num_elems))
return lons_2d, lats_2d, x_rad, y_rad
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# def compute_scale_offset(lon_a, lat_a, col_a, line_a, lon_b, lat_b, col_b, line_b):
# lamda_a, theta_a = earth_to_sat(lon_a, lat_a)
# lamda_b, theta_b = earth_to_sat(lon_b, lat_b)
#
# # To setup the problem below
# # (CFAC * col_a) + COFF = lamda_a
# # (CFAC * col_b) + COFF = lamda_b
#
# # (LFAC * line_a) + LOFF = theta_a
# # (LFAC * line_b) + LOFF = theta_b
#
# a = np.array([[col_a, 1], [col_b, 1]])
# b = np.array([lamda_a, lamda_b])
# x = linalg.solve(a, b)
# print(x)
#
# a = np.array([[line_a, 1], [line_b, 1]])
# b = np.array([theta_a, theta_b])
# x = linalg.solve(a, b)
# print(x)
#
#
# def test(flons, flats):
# fflons = flons.flatten()
# fflats = flats.flatten()
# num = len(fflons)
#
# for i in range(0, num-1, 50000):
# lon = fflons[i]
# lat = fflats[i]
# if lon == -999.0:
# continue
# c, l = earth_to_lc(lon, lat)
# print(lon, flons[l,c])
# print(lat, flats[l,c])
# print(haversine_np(lon, lat, flons[l,c], flats[l,c]))
# print('-----------------------')