Newer
Older
import xarray as xr
import numpy as np
import os

Paolo Veglio
committed
import logging
from datetime import datetime as dt
_DTR = np.pi/180.
_RTD = 180./np.pi

Paolo Veglio
committed
_bad_data = -999.0

Paolo Veglio
committed
logging.basicConfig(level=logging.INFO, format='%(name)s - %(levelname)s - %(message)s')
# logging.basicConfig(level=logging.INFO, filename='logfile.log', 'filemode='w',
# format='%(name)s %(levelname)s %(message)s')

Paolo Veglio
committed
def read_viirs_data(l1b_filename: str,
geo_filename: str) -> xr.Dataset:
"""Read VIIRS MOD or IMG data
Parameters
----------
l1b_filename: str
L1b VIIRS filename
geo_filename: str
geoocation VIIRS filename
Returns
-------
in_data: xarray.Dataset
dataset containing VIIRS bands, geolocation data and additional info (i.e. relative azimuth,
sunglint angle and scattering angle)
"""

Paolo Veglio
committed
in_data = xr.open_dataset(geo_filename, group='geolocation_data')
data = xr.open_dataset(l1b_filename, group='observation_data', decode_cf=False)

Paolo Veglio
committed

Paolo Veglio
committed
for band in list(data.variables):
if 'reflectance' in data[band].long_name:
if hasattr(data[band], 'VCST_scale_factor'):
scale_factor = data[band].VCST_scale_factor * data[band].bias_correction

Paolo Veglio
committed
scale_factor = data[band].scale_factor
in_data[band] = (('number_of_lines', 'number_of_pixels'),
data[band].values * scale_factor / np.cos(in_data.solar_zenith.values*_DTR))
elif 'radiance' in data[band].long_name:
in_data[band] = (('number_of_lines', 'number_of_pixels'),
data[f'{band}_brightness_temperature_lut'].values[data[band].values])
else:
pass

Paolo Veglio
committed
relazi = relative_azimuth_angle(in_data.sensor_azimuth.values, in_data.solar_azimuth.values)
sunglint = sun_glint_angle(in_data.sensor_zenith.values, in_data.solar_zenith.values, relazi)
scatt_angle = scattering_angle(in_data.solar_zenith.values, in_data.sensor_zenith.values, relazi)
in_data['relative_azimuth'] = (('number_of_lines', 'number_of_pixels'), relazi)
in_data['sunglint_angle'] = (('number_of_lines', 'number_of_pixels'), sunglint)
in_data['scattering_angle'] = (('number_of_lines', 'number_of_pixels'), scatt_angle)
return in_data
def relative_azimuth_angle(sensor_azimuth: np.ndarray,
solar_azimuth: np.ndarray) -> np.ndarray:

Paolo Veglio
committed
"""Computation of the relative azimuth angle
Parameters
----------
sensor_azimuth: np.ndarray
sensor azimuth angle from the geolocation file
solar_azimuth: np.ndarray
solar azimuth angle from the geolocation file
Returns
-------
relative_azimuth: np.ndarray
"""
rel_azimuth = np.abs(180. - np.abs(sensor_azimuth - solar_azimuth))
return rel_azimuth
def sun_glint_angle(sensor_zenith: np.ndarray,
solar_zenith: np.ndarray,
rel_azimuth: np.ndarray) -> np.ndarray:

Paolo Veglio
committed
"""Computation of the sun glint angle
Parameters
----------
sensor_zenith: np.ndarray
sensor zenith angle from the geolocation file
solar_zenith: np.ndarray
solar zenith angle from the geolocation file
relative_azimuth: np.ndarray
relative azimuth computed from function relative_azimuth_angle()
Returns
-------
sunglint_angle: np.ndarray
"""
cossna = (np.sin(sensor_zenith*_DTR) * np.sin(solar_zenith*_DTR) * np.cos(rel_azimuth*_DTR) +
np.cos(sensor_zenith*_DTR) * np.cos(solar_zenith*_DTR))
cossna[cossna > 1] = 1
sunglint_angle = np.arccos(cossna) * _RTD
return sunglint_angle
def scattering_angle(solar_zenith: np.ndarray,
sensor_zenith: np.ndarray,
relative_azimuth: np.ndarray) -> np.ndarray:

Paolo Veglio
committed
"""Computation of the scattering angle
Parameters
----------
solar_zenith: np.ndarray
solar zenith angle from the geolocation file
sensor_zenith: np.ndarray
sensor zenith angle angle from the geolocation file
relative_azimuth: np.ndarray
relative azimuth computed from function relative_azimuth_angle()
Returns
-------
scattering_angle: np.ndarray
"""
cos_scatt_angle = -1. * (np.cos(solar_zenith*_DTR) * np.cos(sensor_zenith*_DTR) -
np.sin(solar_zenith*_DTR) * np.sin(sensor_zenith*_DTR) *
np.cos(relative_azimuth*_DTR))
scatt_angle = np.arccos(cos_scatt_angle) * _RTD
return scatt_angle
def correct_reflectances():
pass
def read_ancillary_data(file_names: str,

Paolo Veglio
committed
latitude: np.ndarray,
longitude: np.ndarray,
resolution: int = 1) -> xr.Dataset:

Paolo Veglio
committed
"""Read ancillary data using C functions from original MVCM
Parameters
----------
file_names: str
latitude: np.ndarray
longitude: np.ndarray
resolution: int
Returns
-------
data: xarray.Dataset
"""
# Ancillary files temporarily defined here. Eventually we will find a better way to pass these

Paolo Veglio
committed
anc_dir = file_names['ANC_DIR']
sst_file = file_names['SST']
ndvi_file = file_names['NDVI']
geos_cnst = file_names['GEOS_constants']
geos_lnd = file_names['GEOS_land']
geos_ocn = file_names['GEOS_ocean']
geos1 = file_names['GEOS_atm_1']
geos2 = file_names['GEOS_atm_2']
vnptime = '.'.join(os.path.basename(file_names['MOD02']).split('.')[1:3])
start_time = dt.strftime(dt.strptime(vnptime, 'A%Y%j.%H%M'), '%Y-%m-%d %H:%M:%S.000')

Paolo Veglio
committed

Paolo Veglio
committed
out_shape = latitude.shape

Paolo Veglio
committed
sst = np.empty((np.prod(out_shape), ), dtype=np.float32)
ndvi = np.empty((np.prod(out_shape), ), dtype=np.float32)
eco = np.empty((np.prod(out_shape), ), dtype=np.ubyte)

Paolo Veglio
committed

Paolo Veglio
committed
geos_data = {'tpw': np.empty((np.prod(out_shape), ), dtype=np.float32),
'snowfr': np.empty((np.prod(out_shape), ), dtype=np.float32),
'icefr': np.empty((np.prod(out_shape), ), dtype=np.float32),
'ocnfr': np.empty((np.prod(out_shape), ), dtype=np.float32),
'landicefr': np.empty((np.prod(out_shape), ), dtype=np.float32),
'sfct': np.empty((np.prod(out_shape), ), dtype=np.float32),

Paolo Veglio
committed
sst = anc.py_get_Reynolds_SST(latitude.ravel(), longitude.ravel(), resolution, anc_dir, sst_file, sst)
logging.info('SST read successfully')

Paolo Veglio
committed
ndvi = anc.py_get_NDVI_background(latitude.ravel(), longitude.ravel(),

Paolo Veglio
committed
resolution, anc_dir, ndvi_file, ndvi)

Paolo Veglio
committed
logging.info('NDVI read successfully')
eco = anc.py_get_Olson_eco(latitude.ravel(), longitude.ravel(), resolution, anc_dir, eco)
logging.info('Olson eco read successfully')
geos = anc.py_get_GEOS(latitude.ravel(), longitude.ravel(), resolution, start_time, anc_dir,
geos1, geos2, geos_lnd, geos_ocn, geos_cnst, geos_data)
logging.info('GEOS5 data read successfully')
ancillary = {'sst': sst.reshape(out_shape),
'ndvi': ndvi.reshape(out_shape),
'eco': eco.reshape(out_shape)
}
for var in list(geos):
ancillary[f'geos_{var}'] = geos[var].reshape(out_shape)
dims = ('number_of_lines', 'number_of_pixels')
data = xr.Dataset.from_dict({var: {'dims': dims, 'data': ancillary[var]} for var in list(ancillary)})

Paolo Veglio
committed
def get_data(satellite: str,
sensor: str,
file_names: Dict[str, str],
sunglint_angle: float,
hires: bool = False) -> xr.Dataset:
mod02 = file_names['MOD02']
mod03 = file_names['MOD03']
if hires is True:
img02 = file_names['IMG02']
img03 = file_names['IMG03']

Paolo Veglio
committed
viirs_data = read_viirs_data(sensor, f'{mod02}', f'{mod03}')
viirs_data = read_ancillary_data(file_names, viirs_data)
if (('M05' in viirs_data) and ('M07' in viirs_data)):
m01 = viirs_data.M05.values
m02 = viirs_data.M07.values
r1 = 2.0 * (np.power(m02, 2.0) - np.power(m01, 2.0)) + (1.5 * m02) + (0.5 * m01)
r2 = m02 + m01 + 0.5
r3 = r1 / r2
gemi = r3 * (1.0 - 0.25*r3) - ((m01 - 0.125) / (1.0 - m01))
else:
gemi = np.full((viirs_data.M15.shape), _bad_data)
if 'M05' in viirs_data:
idx = np.nonzero((viirs_data.M05.values < -99) | (viirs_data.M05.values > 2))
viirs_data['M05'].values[idx] = _bad_data
else:
viirs_data['M05'] = (('number_of_lines', 'number_of_pixels'),
np.full(viirs_data.M15.shape, _bad_data))
if 'M07' in viirs_data:
idx = np.nonzero((viirs_data.M07.values < -99) | (viirs_data.M07.values > 2))
viirs_data['M07'].values[idx] = _bad_data
else:
viirs_data['M07'] = (('number_of_lines', 'number_of_pixels'),
np.full(viirs_data.M15.shape, _bad_data))

Paolo Veglio
committed
idx = np.nonzero((viirs_data.M12.values < 0) | (viirs_data.M12.values > 1000))
viirs_data['M12'].values[idx] = _bad_data
idx = np.nonzero((viirs_data.M13.values < 0) | (viirs_data.M13.values > 1000))
viirs_data['M13'].values[idx] = _bad_data
idx = np.nonzero((viirs_data.M14.values < 0) | (viirs_data.M14.values > 1000))
viirs_data['M14'].values[idx] = _bad_data
idx = np.nonzero((viirs_data.M15.values < 0) | (viirs_data.M15.values > 1000))
viirs_data['M15'].values[idx] = _bad_data
idx = np.nonzero((viirs_data.M16.values < 0) | (viirs_data.M16.values > 1000))
viirs_data['M16'].values[idx] = _bad_data
# Compute channel differences and ratios that are used in the tests

Paolo Veglio
committed
viirs_data['M15-M13'] = (('number_of_lines', 'number_of_pixels'),
viirs_data.M15.values - viirs_data.M13.values)
viirs_data['M14-M15'] = (('number_of_lines', 'number_of_pixels'),
viirs_data.M14.values - viirs_data.M15.values)
viirs_data['M15-M16'] = (('number_of_lines', 'number_of_pixels'),
viirs_data.M15.values - viirs_data.M16.values)
viirs_data['M15-M12'] = (('number_of_lines', 'number_of_pixels'),
viirs_data.M15.values - viirs_data.M12.values)
viirs_data['M13-M16'] = (('number_of_lines', 'number_of_pixels'),
viirs_data.M13.values - viirs_data.M16.values)
viirs_data['M07-M05ratio'] = (('number_of_lines', 'number_of_pixels'),
viirs_data.M07.values / viirs_data.M05.values)
viirs_data['GEMI'] = (('number_of_lines', 'number_of_pixels'), gemi)
# temp value to force the code to work
viirs_data['M128'] = (('number_of_lines', 'number_of_pixels'), np.zeros(viirs_data.M15.shape))
else:
viirs_data = read_data('viirs', f'{img02}', f'{img03}')
viirs_data['M05'] = viirs_data.I01
viirs_data['M07'] = viirs_data.I02

Paolo Veglio
committed
idx = np.nonzero((viirs_data.M05.values < -99) | (viirs_data.M05.values > 2))
viirs_data['M05'].values[idx] = _bad_data
idx = np.nonzero((viirs_data.M07.values < -99) | (viirs_data.M07.values > 2))
viirs_data['M07'].values[idx] = _bad_data
idx = np.nonzero((viirs_data.I01.values < 0) | (viirs_data.I01.values > 1000))
viirs_data['I01'].values[idx] = _bad_data
idx = np.nonzero((viirs_data.I02.values < 0) | (viirs_data.I02.values > 1000))
viirs_data['I02'].values[idx] = _bad_data
idx = np.nonzero((viirs_data.I03.values < 0) | (viirs_data.I03.values > 1000))
viirs_data['I03'].values[idx] = _bad_data
idx = np.nonzero((viirs_data.I04.values < 0) | (viirs_data.I04.values > 1000))
viirs_data['I04'].values[idx] = _bad_data
idx = np.nonzero((viirs_data.I05.values < 0) | (viirs_data.I05.values > 1000))
viirs_data['I05'].values[idx] = _bad_data
viirs_data = read_ancillary_data(file_names, viirs_data, resolution=2)
viirs_data['I05-I04'] = (('number_of_lines_2', 'number_of_pixels_2'),
viirs_data.I05.values - viirs_data.I04.values)
viirs_data['I02-I01ratio'] = (('number_of_lines_2', 'number_of_pixels_2'),
viirs_data.I02.values / viirs_data.I01.values)
scene_flags = scn.find_scene(viirs_data, sunglint_angle)
scene = scn.scene_id(scene_flags)
scene_xr = xr.Dataset()
for s in scn._scene_list:
scene_xr[s] = (('number_of_lines', 'number_of_pixels'), scene[s])
scene['lat'] = viirs_data.latitude
scene['lon'] = viirs_data.longitude
data = xr.Dataset(viirs_data, coords=scene_xr)
data.drop_vars(['latitude', 'longitude'])
return data