Newer
Older

Paolo Veglio
committed
import matplotlib.pyplot as plt

Paolo Veglio
committed
import cartopy.crs as ccrs
import numpy as np
import netCDF4 as nc
import sys
import os
from scene import test_scene
matplotlib.use('Agg')

Paolo Veglio
committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def main(scene_flag):
scn = test_scene()
lat = scn['lat']
lon = scn['lon']
plt.figure(figsize=[15, 10])
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent([np.min(lon)-15, np.max(lon)+15,
np.min(lat)-15, np.max(lat)+15], crs=ccrs.PlateCarree())
ax.coastlines(resolution='50m', color='black', linewidth=1)
plt.pcolormesh(lon, lat, scn[scene_flag],
transform=ccrs.PlateCarree())
plt.show()
def plot_tests(numpy_file='test_confidence.npz'):
data = np.load(numpy_file)
lat = data['lat']
lon = data['lon']
# confidence = data['confidence']
conf_test = data['conf_test']
confidence = data['confidence']
cm = np.zeros(confidence.shape)
cm[confidence > 0.66] = 1
cm[confidence > 0.95] = 2
cm[confidence > 0.99] = 3
for i in range(9):
print(f'Making plot {i}\n')
plt.figure(figsize=[15, 10])
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent([np.min(lon)-5, np.max(lon)+5,
np.min(lat)-5, np.max(lat)+5], crs=ccrs.PlateCarree())
ax.coastlines(resolution='50m', color='black', linewidth=1)
plt.pcolormesh(lon, lat, conf_test[i, :, :], vmin=0, vmax=1,
transform=ccrs.PlateCarree())
plt.title(f'Confidence {i}')
plt.colorbar()
plt.savefig(f'figures/confplot_{i}.png')
plt.figure(figsize=[15, 10])
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent([np.min(lon)-5, np.max(lon)+5,
np.min(lat)-5, np.max(lat)+5], crs=ccrs.PlateCarree())
ax.coastlines(resolution='50m', color='black', linewidth=1)
plt.pcolormesh(lon, lat, cm, vmin=0, vmax=3,
transform=ccrs.PlateCarree())
plt.title('Cloud Mask')
# plt.colorbar()
cb = plt.colorbar(ticks=range(4))
cb.set_ticklabels(['confident cloudy', 'probably cloudy', 'probably clear', 'confident clear'])
plt.savefig('figures/total_cm.png')
def plot_confidence(numpy_file='test_confidence.npz'):
data = np.load(numpy_file)
lat = data['lat']
lon = data['lon']
# confidence = data['confidence']
confidence = data['confidence']
cm = np.zeros(confidence.shape)
cm[confidence > 0.66] = 1
cm[confidence > 0.95] = 2
cm[confidence > 0.99] = 3

Paolo Veglio
committed
plt.figure(figsize=[15, 10])
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent([np.min(lon)-5, np.max(lon)+5,
np.min(lat)-5, np.max(lat)+5], crs=ccrs.PlateCarree())
ax.coastlines(resolution='50m', color='black', linewidth=1)
plt.pcolormesh(lon, lat, cm, vmin=0, vmax=3,

Paolo Veglio
committed
transform=ccrs.PlateCarree())
# plt.title('Confidence')
# plt.colorbar()

Paolo Veglio
committed
plt.title('Cloud Mask')
cb = plt.colorbar(ticks=range(4))
cb.set_ticklabels(['confident cloudy', 'probably cloudy', 'probably clear', 'confident clear'])
plt.savefig('figures/python_cloudmask.png', dpi=300)

Paolo Veglio
committed
def plot_cloud_mask():
# f = nc.Dataset('/ships19/hercules/pveglio/mvcm_viirs_hires/CLDMSK_L2_VIIRS_SNPP.A2022173.1454.001.2022174035130.nc')
f = nc.Dataset('/ships19/hercules/pveglio/mvcm_viirs_hires/outputs/CLDMSK_L2_MODIS_SNPP.A2022173.1454.001_viirs_cris.nc')

Paolo Veglio
committed
lat = f['geolocation_data/latitude'][:]
lon = f['geolocation_data/longitude'][:]
# icm = f['geophysical_data/Integer_Cloud_Mask'][:]
cm = f['geophysical_data/Cloud_Mask'][:]
qa = f['geophysical_data/Quality_Assurance'][:]
sst = f['geolocation_data/SST'][:]

Paolo Veglio
committed
f.close()
# cm_flag = np.array((np.array(cm[0, :, :], np.byte) &
# (pow(2, 1) + pow(2, 2)))/pow(2, 1))
# cm_flag = read_bits(qa[:, :, 2], 2) & ~read_bits(cm[2, :, :], 2)
cm_flag = read_bits(qa[:, :, 2], 0) & ~read_bits(cm[2, :, :], 0)

Paolo Veglio
committed
plt.figure(figsize=[15, 10])
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent([np.min(lon)-5, np.max(lon)+5,
np.min(lat)-5, np.max(lat)+5], crs=ccrs.PlateCarree())
ax.coastlines(resolution='50m', color='black', linewidth=1)
plt.pcolormesh(lon, lat, cm_flag, vmin=0, vmax=1,
transform=ccrs.PlateCarree())
# cb = plt.colorbar(ticks=range(4))
# cb.set_ticklabels(['confident cloudy', 'probably cloudy', 'probably clear', 'confident clear'])
cb = plt.colorbar(ticks=range(2))
cb.set_ticklabels(['No', 'Yes'])
# plt.savefig('figures/ref_cloudmask.png', dpi=300)
plt.savefig('figures/1_38um_high_cloud_test.png', dpi=300)

Paolo Veglio
committed
def read_bits(byte, bits):
# orig_shape = byte.shape
# if byte.ndim > 1:
# byte = byte.reshape((byte.shape[0]*byte.shape[1],))
if type(bits) is int:
flag = np.array((np.array(byte, np.byte) & pow(2, bits))/pow(2, bits),
dtype='bool')
else:
flag = (np.array(byte, np.byte) & pow(2, bits[0]) +
pow(2, bits[1]))/pow(2, bits[0])
flag = np.array(np.trunc(1.0-flag/2.0), dtype='bool')
# flag = flag.reshape((orig_shape))
return flag
if __name__ == "__main__":
# main(sys.argv[1])
# plot_tests(sys.argv[1])
plot_confidence(sys.argv[1])

Paolo Veglio
committed
# plot_cloud_mask()