Newer
Older
import numpy as np
from numpy.lib.stride_tricks import sliding_window_view
import utils
import conf

Paolo Veglio
committed
import ancillary_data as c_tools
# ############## GROUP 1 TESTS ############## #
# 11 micron brightness temperature threshold test
def simple_test(rad, threshold, cmin):
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
thr = np.array(threshold)
confidence = np.ones(rad.shape)

Paolo Veglio
committed
bit = np.zeros(rad.shape)
if thr[4] == 1:
print("simple test running")
# the C code has the line below that I don't quite understand the purpose of.
# It seems to be setting the bit to 0 if the BT value is greater than the midpoint
#
# if (m31 >= dobt11[1]) (void) set_bit(13, pxout.testbits);
# confidence = utils.conf_test(rad, thr)
confidence = conf.conf_test(rad, thr)

Paolo Veglio
committed
bit[rad >= thr[1]] = 1

Paolo Veglio
committed
return np.minimum(cmin, confidence.reshape(radshape)), confidence.reshape(radshape), bit.reshape(radshape)
def sst_test(rad1, rad2, vza, surf_temp, threshold, cmin):
a1 = 1.8860
a2 = 0.9380
a3 = 0.1280
a4 = 1.0940
radshape = rad1.shape
b31 = rad1.reshape(np.prod(radshape)) - 273.16
b32 = rad2.reshape(np.prod(radshape)) - 273.16
thr = np.array(threshold)
confidence = np.ones(b31.shape)

Paolo Veglio
committed
bit = np.zeros(b31.shape)
rad_diff = b31 - b32
sstc = surf_temp.reshape(np.prod(radshape)) - 273.16
mu = np.cos(vza.reshape(np.prod(radshape)) * np.pi/180.0)
modsst = 273.16 + a1 + a2*b31 + a3*rad_diff*sstc + a4*rad_diff*((1/mu)-1)
sfcdif = surf_temp.reshape(np.prod(radshape)) - modsst
if thr[4] == 1:
print('SST test running')
confidence = conf.conf_test(sfcdif, thr)

Paolo Veglio
committed
bit[sfcdif < thr[1]] = 1

Paolo Veglio
committed
return np.minimum(cmin, confidence.reshape(radshape)), confidence.reshape(radshape), bit.reshape(radshape)

Paolo Veglio
committed
def test_11_12_diff(data, threshold, cmin):
radshape = data.M15.shape
b31 = data.M15.values.reshape(np.prod(radshape))
b32 = data.M15.values.reshape(np.prod(radshape))
vza = data.sensor_zenith.values.reshape(np.prod(radshape))
thr = np.array(threshold)
confidence = np.ones(b31.shape)

Paolo Veglio
committed
bit = np.zeros(b31.shape)
rad_diff = b31 - b32

Paolo Veglio
committed
# Get secant of viewing zenith angle
dtr = np.pi/180
cosvza = np.cos(vza * dtr)
schi = np.full(cosvza.shape, 99.0)
schi[cosvza > 0.0] = 1.0/cosvza[cosvza > 0.0]
# Need to define this in cython
btd_thr = c_tools.py_cithr(1, np.array(schi, dtype=np.float32), np.array(b31, dtype=np.float32))
idx = np.nonzero((btd_thr < 0.1) | (np.abs(schi-99.0) < 0.0001))
btd_thr[idx] = thr[0]
locut = btd_thr + 0.3*btd_thr
hicut = btd_thr - 1.25
corr_thr = np.array([locut, btd_thr, hicut, np.ones(locut.shape)], dtype=np.float)
if thr[1] == 1:
print('11-12um diff test running')

Paolo Veglio
committed
bit[rad_diff < thr[1]] = 1
confidence = conf.conf_test(rad_diff, corr_thr)

Paolo Veglio
committed
return np.minimum(cmin, confidence.reshape(radshape)), confidence.reshape(radshape), bit.reshape(radshape)

Paolo Veglio
committed
def test_11_4_diff(rad1, rad2, threshold, scene_flags, cmin):
radshape = rad1.shape
b31 = rad1.reshape(np.prod(radshape))
b20 = rad2.reshape(np.prod(radshape))
thr = np.array(threshold)

Paolo Veglio
committed
sunglint = scene_flags['sunglint'].reshape(np.prod(radshape))
confidence = np.ones(b31.shape)
if thr[4] == 1:
print('11-4um diff test running')

Paolo Veglio
committed
confidence[sunglint == 0] = conf.conf_test((b31-b20)[sunglint == 0], thr)

Paolo Veglio
committed
return np.minimum(cmin, confidence.reshape(radshape)), confidence.reshape(radshape)

Paolo Veglio
committed
def vis_nir_ratio_test(rad1, rad2, threshold, scene, cmin):
if threshold['Daytime_Ocean']['vis_nir_ratio'][6] == 1:
print("NIR-Visible ratio test running")
radshape = rad1.shape
rad1 = rad1.reshape(np.prod(radshape))
rad2 = rad2.reshape(np.prod(radshape))

Paolo Veglio
committed
sunglint = scene['sunglint'].reshape(np.prod(radshape))
vrat = rad2/rad1

Paolo Veglio
committed
confidence = np.ones(rad1.shape)
tmp = threshold['Daytime_Ocean']['vis_nir_ratio']
thr_no_sunglint = np.array([tmp[0], tmp[1], tmp[2], tmp[3], tmp[4], tmp[5], 1, 1])
tmp = threshold['Sun_Glint']['snglnt']
thr_sunglint = np.array([tmp[0], tmp[1], tmp[2], tmp[3], tmp[4], tmp[5], 1])
# thr_no_sunglint = np.array(threshold['Daytime_Ocean']['vis_nir_ratio'])
# thr_sunglint = np.array(threshold['Sun_Glint']['snglnt'])
# thr_sunglint = np.append(thr_sunglint, 1)
# temp value to avoid linter bitching at me
# eventually we would have the test run in two blocks as:
# confidence[sunglint == 1] = conf.conf_test_dble(vrat[sunglint == 1], sg_threshold['snglnt'])
# confidence[sunglint == 0] = conf.conf_test_dble(vrat[sunglint == 0], threshold['vis_nir_ratio'])
# sunglint needs to be defined somewhere

Paolo Veglio
committed
# thr = np.full((rad.shape[0], 4), thr[:4]).T
# thresh = np.full((rad1.shape[0], thr_no_sunglint.shape[0]), thr_no_sunglint)
# thresh[sunglint == 1, :6] = thr_sunglint

Paolo Veglio
committed
confidence[sunglint == 0] = conf.conf_test_dble(vrat, thr_no_sunglint)[sunglint == 0]
confidence[sunglint == 1] = conf.conf_test_dble(vrat, thr_sunglint)[sunglint == 1]
# confidence = conf.conf_test_dble(vrat, thresh.T)

Paolo Veglio
committed
return np.minimum(cmin, confidence.reshape(radshape)), confidence.reshape(radshape)
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def nir_refl_test(rad, threshold, sunglint_thresholds, viirs_data, cmin):
print("NIR reflectance test running")
sza = viirs_data.solar_zenith.values
refang = viirs_data.sunglint_angle.values
vza = viirs_data.sensor_zenith.values
dtr = np.pi/180
# Keep in mind that band_n uses MODIS band numbers (i.e. 2=0.86um and 7=2.1um)
# For VIIRS would be 2=M07 (0.865um) and 7=M11 (2.25um)
band_n = 2
vzcpow = 0.75 # THIS NEEDS TO BE READ FROM THE THRESHOLDS FILE
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
confidence = np.ones(rad.shape)
sza = sza.reshape(rad.shape)
vza = vza.reshape(rad.shape)
refang = refang.reshape(rad.shape)
sunglint_flag = utils.sunglint_scene(refang, sunglint_thresholds).reshape(rad.shape)
# ref2 [5]
# b2coeffs [4]
# b2mid [1]
# b2bias_adj [1]
# b2lo [1]
# vzcpow [3] (in different place)
cosvza = np.cos(vza*dtr)
coeffs = threshold['b2coeffs']
hicut0 = np.array(coeffs[0] + coeffs[1]*sza + coeffs[2]*np.power(sza, 2) + coeffs[3]*np.power(sza, 3))
hicut0 = (hicut0 * 0.01) + threshold['b2adj']
hicut0 = hicut0 * threshold['b2bias_adj']
midpt0 = hicut0 + (threshold['b2mid'] * threshold['b2bias_adj'])
locut0 = midpt0 + (threshold['b2lo'] * threshold['b2bias_adj'])
thr = np.array([locut0, midpt0, hicut0, threshold['ref2'][3]*np.ones(rad.shape)])
corr_thr = np.zeros((4, rad.shape[0]))
corr_thr[:3, sunglint_flag == 0] = thr[:3, sunglint_flag == 0] * (1./np.power(cosvza[sunglint_flag == 0], vzcpow))
corr_thr[3, sunglint_flag == 0] = thr[3, sunglint_flag == 0]

Paolo Veglio
committed
# corr_thr[:3, :] = thr[:3, :] * (1./np.power(cosvza[:], vzcpow))
# corr_thr[3, :] = thr[3, :]
for flag in range(1, 4):
if len(refang[sunglint_flag == flag]) > 0:
sunglint_thr = utils.get_sunglint_thresholds(refang, sunglint_thresholds, band_n, flag, thr)
corr_thr[:3, sunglint_flag == flag] = sunglint_thr[:3, sunglint_flag == flag] * (1./np.power(cosvza[sunglint_flag == flag], vzcpow))
corr_thr[3, sunglint_flag == flag] = sunglint_thr[3, sunglint_flag == flag]
confidence = conf.conf_test(rad, corr_thr)

Paolo Veglio
committed
return np.minimum(cmin, confidence.reshape(radshape)), confidence.reshape(radshape)
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
def nir_high_cloud_test():
pass
def test_11um_var(rad, threshold, var_threshold):
print("11um variability test running")
thr = np.array(threshold['11um_var'])
radshape = rad.shape
var = np.zeros((radshape[0], radshape[1], 9))
# chk_spatial2() need to figure out what this is
# np = rg_var.num_small_diffs * 1.0
test = sliding_window_view(np.pad(rad, [1, 1], mode='constant'), (3, 3)) - np.expand_dims(rad, (2, 3))
var[np.abs(test).reshape(radshape[0], radshape[1], 9) < var_threshold['dovar11']] = 1
var = var.sum(axis=2).reshape(np.prod(radshape))
rad = rad.reshape(np.prod(radshape))
confidence = np.zeros(rad.shape)
confidence[var == 9] = conf.conf_test(rad[var == 9], thr)
return confidence.reshape(radshape)
def test_11_4diff(rad1, rad2, threshold, viirs_data, sg_thresh):
print("11um - 4um difference test running")
radshape = rad1.shape
raddiff = (rad1 - rad2).reshape(np.prod(radshape))
day = np.zeros(radshape)
day[viirs_data.solar_zenith <= 85] = 1
day = day.reshape(raddiff.shape)
sunglint = np.zeros(rad1.shape)
sunglint[viirs_data.sunglint_angle <= sg_thresh] = 1
sunglint = sunglint.reshape(raddiff.shape)
thr = np.array(threshold['test11_4lo'])
confidence = np.zeros(raddiff.shape)
# confidence[(day == 1) & (sunglint == 0)] = utils.conf_test(raddiff[(day == 1) & (sunglint == 0)], thr)
confidence[(day == 1) & (sunglint == 0)] = conf.conf_test(raddiff[(day == 1) & (sunglint == 0)], thr)
return confidence.reshape(radshape)
def vir_refl_test(rad, threshold, viirs_data):
print('Visible reflectance test running')
thr = threshold['vis_refl_test']
radshape = rad.shape()
rad = rad.reshape(np.prod(radshape))
confidence = np.zeros(radshape)
vzcpow = 0.75 # THIS NEEDS TO BE READ FROM THE THRESHOLDS FILE
vza = viirs_data.sensor_zenith.values
dtr = np.pi/180
cosvza = np.cos(vza*dtr)
coeffs = utils.get_b1_thresholds()
coeffs[:, :3] = coeffs[:, :3] * threshold['b1_bias_adj']
# this quantity is the return of get_b1_thresholds() in the C code
# it's defined here to keep a consistent logic with the original source, for now
irtn = 0
if irtn != 0:
coeffs = thr
coeffs[:, :3] = coeffs[:, :3] * 1/np.power(cosvza, vzcpow)
confidence = conf.conf_test(rad, coeffs)
return confidence.reshape(radshape)
class CloudMaskTests(object):
def __init__(self, scene, radiance, coefficients):
self.scene = scene
self.coefficients = coefficients
def select_coefficients(self):
pass
def test_G1(self):
pass
def test_G2(self):
pass
def test_G3(self):
pass
def test_G4(self):
pass
def overall_confidence(self):
pass
def test():
rad = np.random.randint(50, size=[4, 8])
# coeffs = [5, 42, 20, 28, 15, 35, 1]
# coeffs = [20, 28, 5, 42, 15, 35, 1]
coeffs = [35, 15, 20, 1, 1]
# confidence = conf_test_dble(rad, coeffs)
confidence = test_11um(rad, coeffs)
print(rad)
print('\n')
print(confidence)
if __name__ == "__main__":
test()