Newer
Older
import numpy as np
import xarray as xr
import ancillary_data as anc
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
_dtr = np.pi/180
# this case is written for the 11-12um Cirrus Test for scenes that follow pattern 1 (see note below)
def prepare_thresholds(data, thresholds):
coeff_values = np.empty((data.M01.shape[0], data.M01.shape[1], 2))
coeff_values[:, :, 0] = np.full(data.M01.shape, thresholds['11-12um_Cirrus_Test']['coeffs'][0])
coeff_values[:, :, 1] = np.full(data.M01.shape, thresholds['11-12um_Cirrus_Test']['coeffs'][1])
cmult_values = np.full(data.M01.shape, thresholds['11-12um_Cirrus_Test']['cmult'])
adj_values = np.full(data.M01.shape, thresholds['11-12um_Cirrus_Test']['adj'])
thr_dict = {'coeffs': (['number_of_lines', 'number_of_pixels', 'z'], coeff_values),
'cmult': (['number_of_lines', 'number_of_pixels'], cmult_values),
'adj': (['number_of_lines', 'number_of_pixels'], adj_values)
}
return xr.Dataset(data_vars=thr_dict)
def preproc(data, thresholds):
cosvza = np.cos(data.sensor_zenith * _dtr)
schi = (1/cosvza).where(cosvza > 0, 99.0)
schi = schi.values.reshape(np.prod(schi.shape))
m15 = data.M15.values.reshape(np.prod(data.M15.shape))
thr = anc.py_cithr(1, schi, m15)
thr = thr.reshape(data.M15.shape)
schi = schi.reshape(data.M15.shape)
# thr_xr = xr.Dataset(np.full(data.sensor_zenith.shape, thresholds['coeffs']),
# dims=('number_of_lines', 'number_of_pixels'))
thr_xr = prepare_thresholds(data, thresholds)
midpt = thr_xr.coeffs[:, :, 0].where((thr < 0.1) | (np.abs(schi-99) < 0.0001), thr)
locut = midpt + (thr_xr.cmult * midpt)
hicut = midpt - thr_xr.adj
# this below is for the method 2 of computing hicut
# hicut = midpt - (thr_xr.adj * midpt)
thr_out = xr.DataArray(data=np.dstack((locut, midpt, hicut, np.ones(locut.shape), np.ones(locut.shape))),
dims=('number_of_lines', 'number_of_pixels', 'z'))
return thr_out
# return locut, hicut, midpt
def preproc_sst(data, thresholds):
m31c = data.M15 - 273.16
m32c = data.M16 - 273.16
m31c_m32c = m31c - m32c
sstc = data.geos_sfct - 273.16
cosvza = np.cos(data.sensor_zenith*_dtr)
a = thresholds['coeffs']
modsst = 273.16 + a[0] + a[1]*m31c + a[2]*m31c_m32c*sstc + a[3]*m31c_m32c*((1/cosvza) - 1)
sfcdif = data.geos_sfct - modsst
return sfcdif
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
def preproc_nir(data, thresholds, scene):
sza = data.solar_zenith
band_n = 2
# NOTE: the visud condition in the C code is equivalent to having sza <= 85
# For the time being the visud filtering is not implemented
a = np.array(thresholds[scene]['NIR_Reflectance_Test']['coeffs'])
vzcpow = thresholds['VZA_correction']['vzcpow'][0]
refang = data.sunglint_angle.values.reshape(np.prod(data.sunglint_angle.shape))
sunglint_thresholds = thresholds['Sun_Glint']
sunglint_flag = utils.sunglint_scene(refang, sunglint_thresholds).reshape(refang.shape)
nir_thresh = thresholds[scene]['NIR_Reflectance_Test']
hicut0 = a[0] + a[1]*sza + a[2]*np.power(sza, 2) + a[3]*np.power(sza, 3)
hicut0 = (hicut0 * 0.01) + nir_thresh['adj']
hicut0 = (hicut0 + nir_thresh['bias']).values.reshape(refang.shape)
midpt0 = hicut0 + (nir_thresh['midpt_coeff'] * nir_thresh['bias'])
locut0 = midpt0 + (nir_thresh['locut_coeff'] * nir_thresh['bias'])
thr = np.array([locut0, midpt0, hicut0, nir_thresh['thr'][3]*np.ones(refang.shape)])
cosvza = np.cos(data.sensor_zenith*_dtr).values.reshape(refang.shape)
corr_thr = np.zeros((4, refang.shape[0]))
corr_thr[:3, sunglint_flag == 0] = thr[:3, sunglint_flag == 0] * (1./np.power(cosvza[sunglint_flag == 0],
vzcpow))
corr_thr[3, sunglint_flag == 0] = thr[3, sunglint_flag == 0]
for flag in range(1, 4):
if len(refang[sunglint_flag == flag]) > 0:
dosgref = utils.get_sunglint_thresholds(refang, sunglint_thresholds, band_n, flag, thr)
corr_thr[:3, sunglint_flag == flag] = dosgref[:3, sunglint_flag == flag] * \
(1./np.power(cosvza[sunglint_flag == flag], vzcpow))
corr_thr[3, sunglint_flag == flag] = dosgref[3, sunglint_flag == flag]
corr_thr = np.transpose(corr_thr.reshape((4, sza.shape[0], sza.shape[1])), (1, 2, 0))
return corr_thr
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def preproc_surf_temp(data, thresholds):
thr_sfc1 = thresholds['Surface_Temperature_Test_1']
thr_sfc2 = thresholds['Surface_Temperature_Test_2']
thr_df1 = thresholds['Surface_Temperature_Test_df1']
thr_df2 = thresholds['Surface_Temperature_Test_df2']
max_vza = 70.13 # This values is set based on sensor. Check mask_processing_constants.h for MODIS value
rs = np.prod(data.M15.shape)
df1 = (data.M15 - data.M16).values.reshape(rs)
df2 = (data.M15 - data.M13).values.reshape(rs)
desert_flag = data.Desert.values.reshape(rs)
thresh = np.ones((rs, )) * thr_sfc1
idx = np.where((df1 >= thr_df1[0]) | ((df1 < thr_df1[0]) & ((df2 <= thr_df2[0]) | (df2 >= thr_df2[1]))))
thresh[idx] = thr_sfc2
idx = np.where(desert_flag == 1)
thresh[idx] == thr_sfc1
midpt = thresh
idx = np.where(df1 >= thr_df1[1])
midpt[idx] = thresh[idx] + 2.0*df1[idx]
corr = np.power(data.sensor_zenith.values/max_vza, 4) * 3.0
midpt = midpt.reshape(corr.shape) + corr
locut = midpt + 2.0
hicut = midpt - 2.0
thr_out = xr.DataArray(data=np.dstack((locut, midpt, hicut, np.ones(locut.shape), np.ones(locut.shape))),
dims=('number_of_lines', 'number_of_pixels', 'z'))
return thr_out
def get_b1_thresholds():
# fill_ndvi[0] is for fill_ndvi1
# fill_ndvi[1] is for fill_ndvi2
pass
# NOTE: 11-12um Cirrus Test
# hicut is computed in different ways depending on the scene
# 1. midpt - adj
# - Land_Day
# - Land_Day_Coast
# - Land_Day_Desert
# - Land_Day_Desert_Coast
# - Ocean_Day
# - Ocean_Night
# - Polar_Day_Ocean
# - Polar_Night_Ocean
#
# 2. midpt - (btd_thr * adj)
# - Polar_Day_Land
# - Polar_Day_Coast
# - Polar_Day_Desert
# - Polar_Day_Desert_Coast
# - Polar_Day_Snow
#
# 3. Others
# - Land_Night
# - Polar_Night_Land
# - Polar_Night_Snow
# - Day_Snow
# - Night_Snow
# NOTE: 1.38um High Cloud Test
# thresholds are not always computed the same way. In group 1 there's no preprocessing required,
# in group 2 some calcuations are needed
# 1.
# - Land_Day
# - Land_Day_Coast
# - Land_Day_Desert
# - Land_Day_Desert_Coast
# - Polar_Day_Land
# - Polar_Day_Coast
# - Polar_Day_Desert
# - Polar_Day_Desert_Coast
# - Polar_Day_Snow
# - Day_Snow
#
# 2.
# - Ocean_Day
# - Polar_Ocean_Day