Newer
Older
import numpy as np
import xarray as xr
# from numpy.lib.stride_tricks import sliding_window_view
from typing import Dict
import functools
# import utils
import conf
import conf_xr
import scene as scn
import preprocess_thresholds as preproc
import restoral
import importlib
_RTD = 180./np.pi
_DTR = np.pi/180
# this is used for testing, eventually we want to remove it
importlib.reload(preproc)
importlib.reload(conf)

Paolo Veglio
committed
importlib.reload(restoral)
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
class CloudTests(object):
def __init__(self,
data: xr.Dataset,
scene_name: str,
thresholds: Dict) -> None:
self.data = data
self.scene_name = scene_name
self.thresholds = thresholds
self.scene_idx = tuple(np.nonzero(data[scene_name] == 1))
if self.scene_idx[0].shape[0] == 0:
self.pixels_in_scene = False
else:
self.pixels_in_scene = True
def run_if_test_exists_for_scene(func):
@functools.wraps(func)
def wrapper(self, *args, test_name, **kwargs):
if test_name not in self.thresholds[self.scene_name]:
# print('Not running test for this scene')
# returns cmin. This could be changed into a keyworded argument for readability
return args[-1]
return func(self, *args, test_name, **kwargs)
return wrapper
@run_if_test_exists_for_scene
def test_11um(self,
band: str,
cmin: np.ndarray,
test_name: str = '11um_Test') -> np.ndarray:
confidence = np.ones(self.data[band].shape)
threshold = self.thresholds[self.scene_name][test_name]
if (threshold['perform'] is True and self.pixels_in_scene is True):
print(f'Testing "{self.scene_name}"\n')
rad = self.data[band].values[self.scene_idx]
confidence[self.scene_idx] = conf.conf_test_new(rad, threshold['thr'])
cmin = np.fmin(cmin, confidence)
return cmin
@run_if_test_exists_for_scene
def surface_temperature_test(self,
band31: str,
band32: str,
cmin: np.ndarray,
test_name: str = 'Surface_Temperature_test') -> np.ndarray:
pass
@run_if_test_exists_for_scene
def sst_test(self,
band31: str,
band32: str,
cmin: np.ndarray,
test_name: str = 'SST_Test') -> np.ndarray:
confidence = np.ones(self.data.M01.shape)
threshold = self.thresholds[self.scene_name][test_name]
if (threshold['perform'] is True and self.pixels_in_scene is True):
m31 = self.data[band31].values - 273.16
bt_diff = self.data[band31].values - self.data[band32].values
sst = self.data.geos_sfct.values - 273.16
cosvza = np.cos(self.data.sensor_zenith.values*_DTR)
c = threshold['coeffs']
modsst = 273.16 + c[0] + c[1]*m31 + c[2]*bt_diff*sst + c[3]*bt_diff*((1/cosvza) - 1)
sfcdif = self.data.geos_sfct.values - modsst
print(f'Testing "{self.scene_name}"\n')
confidence[self.scene_idx] = conf.conf_test_new(sfcdif[self.scene_idx], threshold['thr'])
cmin = np.fmin(cmin, confidence)
return cmin
@run_if_test_exists_for_scene
def bt_diff_86_11um(self,
band: str,
cmin: np.ndarray,
test_name: str = '8.6-11um_Test') -> np.ndarray:
confidence = np.ones(self.data.M01.shape)
threshold = self.thresholds[self.scene_name][test_name]
if (threshold['perform'] is True and self.pixels_in_scene is True):
print(f'Testing "{self.scene_name}"\n')
rad = self.data[band].values[self.scene_idx]
confidence[self.scene_idx] = conf.conf_test_new(rad, threshold['thr'])
cmin = np.fmin(cmin, confidence)
return cmin
@run_if_test_exists_for_scene
def test_11_12um_diff(self,
band: str,
cmin: np.ndarray,
test_name: str = '11-12um_Cirrus_Test') -> np.ndarray:
confidence = np.ones(self.data.M01.shape)
threshold = self.thresholds[self.scene_name][test_name]
if (threshold['perform'] is True and self.pixels_in_scene is True):
thr = preproc.thresholds_11_12um(self.data, threshold, self.scene_name, self.scene_idx)
print(f'Testing "{self.scene_name}"\n')
rad = self.data[band].values[self.scene_idx]
confidence[self.scene_idx] = conf.conf_test_new(rad, thr)
cmin = np.fmin(cmin, confidence)
return cmin
@run_if_test_exists_for_scene
def oceanic_stratus_11_4um_test(self,
band: str,
cmin: np.ndarray,
test_name: str = '11-4um_Oceanic_Stratus_Test') -> np.ndarray:
confidence = np.ones(self.data.M01.shape)
threshold = self.thresholds[self.scene_name][test_name]
if (threshold['perform'] is True and self.pixels_in_scene is True):
print(f'Testing "{self.scene_name}"\n')
rad = self.data[band].values[self.scene_idx]
thr = threshold['thr']
if self.scene_name in ['Land_Day_Desert', 'Land_Day_Desert_Coast', 'Polar_Day_Desert',
'Polar_Day_Desert_Coast']:
confidence[self.scene_idx] = conf.conf_test_dble(rad, thr)
# these scenes have not been implemented yet
elif self.scene_name in ['Land_Night', 'Polar_Night_Land', 'Polar_Day_Snow', 'Polar_Night_Snow',
'Day_Snow', 'Night_Snow', 'Antarctic_Day']:
pass
else:
confidence[self.scene_idx] = conf.conf_test_new(rad, thr)
cmin = np.fmin(cmin, confidence)
return cmin
@run_if_test_exists_for_scene
def nir_reflectance_test(self,
band: str,
cmin: np.ndarray,
test_name: str = 'NIR_Reflectance_Test') -> np.ndarray:
confidence = np.ones(self.data.M01.shape)
threshold = self.thresholds[self.scene_name][test_name]
if (threshold['perform'] is True and self.pixels_in_scene is True):
thr = preproc.thresholds_NIR(self.data, self.thresholds, self.scene_name,
test_name, self.scene_idx)
print(f'Testing "{self.scene_name}"\n')
rad = self.data[band].values[self.scene_idx]
confidence[self.scene_idx] = conf.conf_test_new(rad, thr)
cmin = np.fmin(cmin, confidence)
return cmin
@run_if_test_exists_for_scene
def vis_nir_ratio_test(self,
band: str,
cmin: np.ndarray,
test_name: str = 'Vis/NIR_Reflectance_Test') -> np.ndarray:
confidence = np.ones(self.data.M01.shape)
threshold = self.thresholds[self.scene_name][test_name]
if (threshold['perform'] is True and self.pixels_in_scene is True):
# I'm not using the self.scene_idx here because it messes up with the indexing of the
# confidence array and I don't want to think of a solution at the moment. I will need
# to figure out the logic to make it work once I'm at the stage where I want to optimize
# the code
rad = self.data[band].values # [self.scene_idx]
solar_zenith = self.data.solar_zenith.values # [self.scene_idx]
sensor_zenith = self.data.sensor_zenith.values # [self.scene_idx]
rel_azimuth = self.data.relative_azimuth.values # [self.scene_idx]
sunglint_angle = self.data.sunglint_angle.values # [self.scene_idx]
cos_refang = np.sin(sensor_zenith*_DTR) * np.sin(solar_zenith*_DTR) * \
np.cos(rel_azimuth*_DTR) + np.cos(sensor_zenith*_DTR) * np.cos(solar_zenith*_DTR)
refang = np.arccos(cos_refang) * _RTD
idx = np.nonzero((solar_zenith <= 85) & (refang <= sunglint_angle))
thr_no_sunglint = np.array([threshold['thr'][i] for i in range(8)])
thr_sunglint = np.array([self.thresholds['Sun_Glint']['snglnt'][i] for i in range(8)])
confidence = conf.conf_test_dble(rad, thr_no_sunglint)
confidence[idx] = conf.conf_test_dble(rad[idx], thr_sunglint)
cmin = np.fmin(cmin, confidence)
return cmin
@run_if_test_exists_for_scene
def test_16_21um_Reflectance(self,
band: str,
cmin: np.ndarray,
test_name: str = '1.6_2.1um_NIR_Reflectance_Test') -> np.ndarray:
confidence = np.ones(self.data.M01.shape)
threshold = self.thresholds[self.scene_name][test_name]
if (threshold['perform'] is True and self.pixels_in_scene is True):
thr = preproc.thresholds_NIR(self.data, self.thresholds, self.scene_name,
test_name, self.scene_idx)
print(f'Testing "{self.scene_name}"\n')
rad = self.data[band].values[self.scene_idx]
confidence[self.scene_idx] = conf.conf_test_new(rad, thr)
cmin = np.fmin(cmin, confidence)
return cmin
@run_if_test_exists_for_scene
def visible_reflectance_test(self,
band: str,
cmin: np.ndarray,
test_name: str = 'Visible_Reflectance_Test') -> np.ndarray:
confidence = np.ones(self.data.M01.shape)
threshold = self.thresholds[self.scene_name][test_name]
if (threshold['perform'] is True and self.pixels_in_scene is True):
print(f'Testing "{self.scene_name}"\n')
thr, rad = preproc.vis_refl_thresholds(self.data, self.thresholds, self.scene_name,
self.scene_idx)
confidence[self.scene_idx] = conf.conf_test_new(rad, thr)
cmin = np.fmin(cmin, confidence)
return cmin
@run_if_test_exists_for_scene
def gemi_test(self,
band: str,
cmin: np.ndarray,
test_name: str = 'GEMI_Test') -> np.ndarray:
confidence = np.ones(self.data.M01.shape)
threshold = self.thresholds[self.scene_name][test_name]
if (threshold['perform'] is True and self.pixels_in_scene is True):
thr = preproc.gemi_thresholds(self.data, threshold, self.scene_name,
self.scene_idx)
rad = self.data[band].values[self.scene_idx]
confidence[self.scene_idx] = conf.conf_test_new(rad, thr)
cmin = np.fmin(cmin, confidence)
return cmin
@run_if_test_exists_for_scene
def test_1_38um_high_clouds(self,
band: str,
cmin: np.ndarray,
test_name: str = '1.38um_High_Cloud_Test') -> np.ndarray:
confidence = np.ones(self.data.M01.shape)
threshold = self.thresholds[self.scene_name][test_name]
if (threshold['perform'] is True and self.pixels_in_scene is True):
if self.scene_name in ['Ocean_Day', 'Polar_Day_Ocean']:
thr = preproc.thresholds_1_38um_test(self.data, self.thresholds, self.scene_name,
self.scene_idx)
else:
thr = threshold['thr']
print(f'Testing "{self.scene_name}"\n')
rad = self.data[band].values[self.scene_idx]
confidence[self.scene_idx] = conf.conf_test_new(rad, thr)
cmin = np.fmin(cmin, confidence)
return cmin
@run_if_test_exists_for_scene
def thin_cirrus_4_12um_BTD_test(self,
band: str,
cmin: np.ndarray,
test_name: str = '4-12um_BTD_Thin_Cirrus_Test') -> np.ndarray:
confidence = np.ones(self.data.M01.shape)
threshold = self.thresholds[self.scene_name][test_name]
if (threshold['perform'] is True and self.pixels_in_scene is True):
thr = preproc.polar_night_thresholds(self.data, self.thresholds, self.scene_name,
test_name, self.scene_idx)
rad = self.data[band].values[self.scene_idx]
confidence[self.scene_idx] = conf.conf_test_new(rad, thr)
cmin = np.fmin(cmin, confidence)
return cmin
def single_threshold_test(self, test_name, band, cmin):
if band == 'bad_data':
return cmin
print(f'Running test "{test_name}" for "{self.scene_name}"')
# preproc_thresholds()
if 'thr' in self.thresholds[self.scene_name][test_name]:
thr = np.array(self.thresholds[self.scene_name][test_name]['thr'])
else:
thr = np.array(self.thresholds[self.scene_name][test_name])
thr_xr = xr.Dataset()
if test_name == '11-12um_Cirrus_Test':
thr_xr['threshold'] = pt.preproc(self.data, self.thresholds[self.scene_name], self.scene_name)
thr = np.ones((5,)) # This is only temporary to force the logic of the code
# I need to find a better solution at some point
elif test_name == 'SST_Test':
thr_xr['threshold'] = (('number_of_lines', 'number_of_pixels', 'z'),
np.ones((self.data[band].shape[0], self.data[band].shape[1], 5))*thr)
elif test_name == '7.3-11um_BTD_Mid_Level_Cloud_Test':
thr_xr['threshold'] = pt.get_pn_thresholds(self.data, self.thresholds, self.scene_name,
'7.3-11um_BTD_Mid_Level_Cloud_Test')
thr = np.ones((5,))
elif test_name == 'Surface_Temperature_Test':
thr_xr['threshold'] = pt.preproc_surf_temp(self.data, self.thresholds[self.scene_name])
thr = np.ones((5,))
elif (test_name == '11-4um_Oceanic_Stratus_Test' and
self.scene_name in ['Land_Day_Desert', 'Land_Day_Desert_Coast', 'Polar_Day_Desert',
'Polar_Day_Desert_Coast']):
thr = np.array([self.thresholds[self.scene_name][test_name][i] for i in range(8)])
elif test_name == 'NIR_Reflectance_Test':
corr_thr = pt.preproc_nir(self.data, self.thresholds, self.scene_name)
thr_xr['threshold'] = (('number_of_lines', 'number_of_pixels', 'z'), corr_thr)
elif test_name == 'Visible_Reflectance_Test':
thr_xr['threshold'], self.data['M128'] = pt.vis_refl_thresholds(self.data,
self.thresholds,
self.scene_name)
elif test_name == '1.6_2.1um_NIR_Reflectance_Test':
corr_thr = pt.nir_refl(self.data, self.thresholds, self.scene_name)
thr_xr['threshold'] = (('number_of_lines', 'number_of_pixels', 'z'), corr_thr)
thr = np.ones((5,))
elif test_name == '4-12um_BTD_Thin_Cirrus_Test':
thr_xr['threshold'] = pt.get_pn_thresholds(self.data, self.thresholds, self.scene_name,
'4-12um_BTD_Thin_Cirrus_Test')
thr = np.ones((5,))
elif test_name == 'GEMI_Test':
thr_xr['threshold'] = pt.GEMI_test(self.data, self.thresholds, self.scene_name)
thr = np.ones((5,))
elif (test_name == '1.38um_High_Cloud_Test' and self.scene_name in ['Ocean_Day', 'Polar_Ocean_Day']):
thr_xr['threshold'] = pt.test_1_38um_preproc(self.data, self.thresholds, self.scene_name)
thr = np.ones((5,))
else:
thr_xr['threshold'] = (('number_of_lines', 'number_of_pixels', 'z'),
np.ones((self.data[band].shape[0], self.data[band].shape[1], 5))*thr)
data = xr.Dataset(self.data, coords=thr_xr)
if test_name == 'SST_Test':
data['sfcdif'] = (('number_of_lines', 'number_of_pixels'),
pt.preproc_sst(data, self.thresholds[self.scene_name][test_name]).values)
band = 'sfcdif'
if test_name == '11um_Variability_Test':
var = pt.var_11um(self.data, self.thresholds)
data['11um_var'] = data.M15
data['11um_var'].values[var != 9] = np.nan
if thr[4] == 1:
print('test running...')
confidence = conf_xr.conf_test(data, band)
cmin = np.fmin(cmin, confidence)
return cmin
def double_threshold_test(self, test_name, band, cmin):
data = self.data
if test_name == '11-4um_BT_Difference_Test':
thr = pt.bt11_4um_preproc(self.data, self.thresholds, self.scene_name)
print('test running...')
confidence = conf.conf_test_dble(data['M15-M13'].values, thr)
confidence = confidence.reshape(data.M01.shape)
if test_name == 'Vis/NIR_Ratio_Test':
print('test running...')
thr_no_sunglint = np.array([self.thresholds[self.scene_name][test_name][i] for i in range(8)])
thr_sunglint = np.array([self.thresholds['Sun_Glint']['snglnt'][i] for i in range(8)])
vrat = data.M07.values/data.M05.values
_dtr = np.pi/180.0
sza = data.sensor_zenith.values
raz = data.relative_azimuth.values
vza = data.sensor_zenith.values
cos_refang = np.sin(vza*_dtr) * np.sin(sza*_dtr) * np.cos(raz*_dtr) + \
np.cos(vza*_dtr) * np.cos(sza*_dtr)
refang = np.arccos(cos_refang) * 180./np.pi
idx = np.nonzero((data.solar_zenith <= 85) & (refang <= data.sunglint_angle))
confidence = conf.conf_test_dble(vrat, thr_no_sunglint)
confidence = confidence.reshape(data.M01.shape)
confidence[idx] = conf.conf_test_dble(vrat[idx], thr_sunglint)
confidence = confidence.reshape(data.M01.shape)
if (test_name == '11-4um_Oceanic_Stratus_Test' and
self.scene_name in ['Land_Day_Desert', 'Land_Day_Desert_Coast', 'Polar_Day_Desert',
'Polar_Day_Desert_Coast']):
thr = np.array([self.thresholds[self.scene_name][test_name][i] for i in range(8)])
print('test running...')
confidence = conf.conf_test_dble(data['M15-M16'].values, thr)
confidence = confidence.reshape(data.M01.shape)
cmin = np.fmin(cmin, confidence)
return cmin
class ComputeTests(CloudTests):
def __init__(self,
data: xr.Dataset,
scene_name: str,
thresholds: Dict) -> None:
super().__init__(data, scene_name, thresholds)
def run_tests(self):
cmin_G1 = np.ones(self.data.M01.shape)
cmin_G2 = np.ones(self.data.M01.shape)
cmin_G3 = np.ones(self.data.M01.shape)
cmin_G4 = np.ones(self.data.M01.shape)
cmin_G5 = np.ones(self.data.M01.shape)
# Group 1
cmin_G1 = self.test_11um('M15', cmin_G1, test_name='11um_Test')
cmin_G1 = self.sst_test('M15', 'M16', cmin_G1, test_name='SST_Test')
# Group 2
cmin_G2 = self.bt_diff_86_11um('M14-M15', cmin_G2, test_name='8.6-11um_Test')
cmin_G2 = self.test_11_12um_diff('M15-M16', cmin_G2, test_name='11-12um_Cirrus_Test')
cmin_G2 = self.oceanic_stratus_11_4um_test('M15-M13', cmin_G2,
test_name='11-4um_Oceanic_Stratus_Test')
# Group 3
cmin_G3 = self.nir_reflectance_test('M07', cmin_G3, test_name='NIR_Reflectance_Test')
cmin_G3 = self.vis_nir_ratio_test('M07M05ratio', cmin_G3, test_name='Vis/NIR_Ratio_Test')
cmin_G3 = self.nir_reflectance_test('M10', cmin_G3, test_name='1.6_2.1um_NIR_Reflectance_Test')
cmin_G3 = self.visible_reflectance_test('M128', cmin_G3, test_name='Visible_Reflectance_Test')
cmin_G3 = self.gemi_test('GEMI', cmin_G3, test_name='GEMI_Test')
# Group 4
cmin_G4 = self.test_1_38um_high_clouds('M09', cmin_G4, test_name='1.38um_High_Cloud_Test')
# Group 5
cmin_G5 = self.thin_cirrus_4_12um_BTD_test('M13-M16', cmin_G5,
test_name='4-12um_BTD_Thin_Cirrus_Test')
cmin = cmin_G1 * cmin_G2 * cmin_G3 * cmin_G4 * cmin_G5
return cmin
def clear_sky_restoral(self,
cmin: np.ndarray) -> np.ndarray:
total_bit = np.full(self.data.M01.shape, 3)
sunglint_angle = self.thresholds['Sun_Glint']['bounds'][3]
scene_flags = scn.find_scene(self.data, sunglint_angle)
idx = np.nonzero((scene_flags['water'] == 1) & (scene_flags['ice'] == 0) &
(scene_flags['uniform'] == 1) & (cmin <= 0.99) & (cmin >= 0.05))

Paolo Veglio
committed
cmin[idx] = restoral.spatial(self.data, self.thresholds['Sun_Glint'], scene_flags, cmin)[idx]
idx = np.nonzero((scene_flags['water'] == 1) & (scene_flags['sunglint'] == 1) &
(scene_flags['uniform'] == 1) & (cmin <= 0.95))
cmin[idx] = restoral.sunglint(self.data, self.thresholds['Sun_Glint'], total_bit, cmin)[idx]

Paolo Veglio
committed
idx = np.nonzero((scene_flags['day'] == 1) & (scene_flags['land'] == 1) &
(scene_flags['snow'] == 0) & (scene_flags['ice'] == 0) &
(cmin <= 0.95))
cmin[idx] = restoral.land(self.data, self.thresholds, scene_flags, cmin)[idx]
idx = np.nonzero((scene_flags['day'] == 1) & (scene_flags['land'] == 1) &
(scene_flags['coast'] == 1) & (scene_flags['snow'] == 0) &
(scene_flags['ice'] == 0))
cmin[idx] = restoral.coast(self.data, self.thresholds, scene_flags, cmin)[idx]
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
return cmin
def preproc_thresholds(thresholds, data):
thr = np.array(thresholds)
thr_xr = xr.Dataset()
thr_xr['tresholds'] = (('number_of_lines', 'number_of_pixels', 'z'),
np.ones((data['M01'].shape[0], data['M01'].shape[1], 5))*thr)
nl_sfct1 = thresholds['Land_Night']['Surface_Temperature_Test'][0]
# nl_sfct2 = thresholds['Land_Night']['Surface_Temperature_Test'][1]
# nlsfct_pfm = thresholds['Land_Night']['Surface_Temperature_Test'][2]
nl_df1 = thresholds['Land_Night']['Surface_Temperature_Test_difference'][0:2]
nl_df2 = thresholds['Land_Night']['Surface_Temperature_Test_difference'][2:]
# df1 = data.M15 - data.M16
# df2 = data.M15 - data.M13
thr_xr = thr_xr.where(data.desert != 1, nl_sfct1)
thr_xr = thr_xr.where((data['M15-M16'] > nl_df1[0]) |
((data['M15-M16'] < nl_df1[0]) &
((data['M15-M13'] <= nl_df2[0]) | (data['M15-M13'] >= nl_df2[1]))),
nl_sfct1[0])
data = xr.Dataset(data, coords=thr_xr)
return data
def single_threshold_test(test, rad, threshold):
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
thr = np.array(threshold[test])
confidence = np.zeros(rad.shape)
if thr[4] == 1:
print(f"{test} test running")
# the C code has the line below that I don't quite understand the purpose of.
# It seems to be setting the bit to 0 if the BT value is greater than the midpoint
#
# if (m31 >= dobt11[1]) (void) set_bit(13, pxout.testbits);
# confidence = utils.conf_test(rad, thr)
confidence = conf.conf_test(rad, thr)
return confidence.reshape(radshape)
def test():
rad = np.random.randint(50, size=[4, 8])
# coeffs = [5, 42, 20, 28, 15, 35, 1]
# coeffs = [20, 28, 5, 42, 15, 35, 1]
coeffs = [35, 15, 20, 1, 1]
# confidence = conf_test_dble(rad, coeffs)
confidence = test_11um(rad, coeffs)
print(rad)
print('\n')
print(confidence)
if __name__ == "__main__":
test()