Newer
Older
import numpy as np

Paolo Veglio
committed
def test(flipped=False):
bt = np.arange(265, 275)

Paolo Veglio
committed
if flipped is False:
thr = np.array([267, 270, 273, 1, 1])
else:
thr = np.array([273, 270, 267, 1, 1])
c = conf_test(bt, thr)
print(c)

Paolo Veglio
committed
def test_dble(flipped=False):
bt = np.arange(260, 282)
if flipped is False:
thr = np.array([264, 267, 270, 273, 276, 279, 1, 1])
else:
thr = np.array([279, 276, 273, 270, 267, 264, 1, 1])
c = conf_test_dble(bt, thr)
print(c)
def conf_test_new(rad: np.ndarray,
thr: np.ndarray) -> np.ndarray:
"""Assuming a linear function between min and max confidence level, the plot below shows
how the confidence (y axis) is computed as function of radiance (x axis).
This case illustrates alpha < gamma, obviously in case alpha > gamma, the plot would be
flipped.
gamma
c 1 ________
o | /
n | /
f | /
i | beta /
d 1/2 |....../
e | /
n | /
c | /
e 0________/
| alpha
--------- radiance ---------->
radshape = rad.shape
rad = rad.ravel()
thr = np.array(thr)
if thr.ndim == 1:
thr = np.full((rad.shape[0], 4), thr[:4]).T
coeff = np.power(2, (thr[3, :] - 1))
locut = thr[0, :]
beta = thr[1, :]
hicut = thr[2, :]
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
power = thr[3, :]
confidence = np.zeros(rad.shape)
alpha, gamma = np.empty(rad.shape), np.empty(rad.shape)
flipped = np.zeros(rad.shape)
gamma[hicut > locut] = thr[2, hicut > locut]
alpha[hicut > locut] = thr[0, hicut > locut]
flipped[hicut > locut] = 0
gamma[hicut < locut] = thr[0, hicut < locut]
alpha[hicut < locut] = thr[2, hicut < locut]
flipped[hicut < locut] = 1
# Rad between alpha and beta
range_ = 2. * (beta - alpha)
s1 = (rad - alpha) / range_
idx = np.nonzero((rad <= beta) & (flipped == 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
idx = np.nonzero((rad <= beta) & (flipped == 1))
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
# Rad between beta and gamma
range_ = 2. * (beta - gamma)
s1 = (rad - gamma) / range_
idx = np.nonzero((rad > beta) & (flipped == 0))
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
idx = np.nonzero((rad > beta) & (flipped == 1))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
# Rad outside alpha-gamma interval
confidence[(rad > gamma) & (flipped is False)] = 1
confidence[(rad < alpha) & (flipped is False)] = 0
confidence[(rad > gamma) & (flipped is True)] = 0
confidence[(rad < alpha) & (flipped is True)] = 1
confidence = np.clip(confidence, 0, 1)
return confidence.reshape(radshape)
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def conf_test(rad, thr):
'''
Assuming a linear function between min and max confidence level, the plot below shows
how the confidence (y axis) is computed as function of radiance (x axis).
This case illustrates alpha < gamma, obviously in case alpha > gamma, the plot would be
flipped.
gamma
c 1 ________
o | /
n | /
f | /
i | beta /
d 1/2 |....../
e | /
n | /
c | /
e 0________/
| alpha
--------- radiance ---------->
'''
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
if thr.ndim == 1:
thr = np.full((rad.shape[0], 4), thr[:4]).T
coeff = np.power(2, (thr[3] - 1))
hicut = thr[2, :]
locut = thr[0, :]
confidence = np.zeros(rad.shape)
alpha, gamma = np.empty(rad.shape), np.empty(rad.shape)
flipped = np.zeros(rad.shape)
gamma[hicut > locut] = thr[2, hicut > locut]
alpha[hicut > locut] = thr[0, hicut > locut]
flipped[hicut > locut] = 0
gamma[hicut < locut] = thr[0, hicut < locut]
alpha[hicut < locut] = thr[2, hicut < locut]
flipped[hicut < locut] = 1
# Rad between alpha and beta
range_ = 2. * (beta - alpha)
s1 = (rad - alpha) / range_
idx = np.nonzero((rad <= beta) & (flipped == 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
idx = np.nonzero((rad <= beta) & (flipped == 1))
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
# Rad between beta and gamma
range_ = 2. * (beta - gamma)
s1 = (rad - gamma) / range_
idx = np.nonzero((rad > beta) & (flipped == 0))
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
idx = np.nonzero((rad > beta) & (flipped == 1))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
# Rad outside alpha-gamma interval
confidence[(rad > gamma) & (flipped is False)] = 1
confidence[(rad < alpha) & (flipped is False)] = 0
confidence[(rad > gamma) & (flipped is True)] = 0
confidence[(rad < alpha) & (flipped is True)] = 1
confidence[confidence > 1] = 1
confidence[confidence < 0] = 0
return confidence
def conf_test_dble(rad, coeffs):
# '''
# gamma1 gamma2
# c 1_______ ________
# o | \ /
# n | \ /
# f | \ /
# i | \ beta1 beta2 /
# d 1/2 \....| |...../
# e | \ /
# n | \ /
# c | \ /
# e 0 \_____________/
# | alpha1 alpha2
# --------------------- radiance ------------------------->
# '''
coeffs = np.array(coeffs)
radshape = rad.shape
confidence = np.zeros(rad.shape)
alpha1, gamma1 = np.empty(rad.shape), np.empty(rad.shape)
alpha2, gamma2 = np.empty(rad.shape), np.empty(rad.shape)
if coeffs.ndim == 1:
coeffs = np.full((rad.shape[0], 7), coeffs[:7]).T
gamma1 = coeffs[0, :]
beta1 = coeffs[1, :]
alpha1 = coeffs[2, :]
alpha2 = coeffs[3, :]
beta2 = coeffs[4, :]
gamma2 = coeffs[5, :]
power = coeffs[6, :]
coeff = np.power(2, (power - 1))
# radshape = rad.shape
# rad = rad.reshape((rad.shape[0]*rad.shape[1]))

Paolo Veglio
committed
# ## Find if interval between inner cutoffs passes or fails test
# Inner region fails test
# Value is within range of lower set of limits
range_ = 2. * (beta1 - alpha1)
s1 = (rad - alpha1) / range_
idx = np.nonzero((rad <= alpha1) & (rad >= beta1) & (alpha1 - gamma1 > 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
range_ = 2. * (beta1 - gamma1)
s1 = (rad - gamma1) / range_

Paolo Veglio
committed
idx = np.nonzero((rad >= gamma1) & (rad < beta1) & (alpha1 - gamma1 > 0))
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
# Value is within range of upper set of limits
range_ = 2. * (beta2 - alpha2)
s1 = (rad - alpha2) / range_
idx = np.nonzero((rad > alpha1) & (rad <= beta2) & (alpha1 - gamma1 > 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
range_ = 2. * (beta2 - gamma2)
s1 = (rad - gamma2) / range_
idx = np.nonzero((rad > alpha1) & (rad > beta2) & (alpha1 - gamma1 > 0))

Paolo Veglio
committed
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
# Check for value beyond function range

Paolo Veglio
committed
confidence[(alpha1 - gamma1 > 0) & (rad > alpha1) & (rad < alpha2)] = 0
confidence[(alpha1 - gamma1 > 0) & ((rad < gamma1) | (rad > gamma2))] = 1
###
# Inner region passes test

Paolo Veglio
committed
print("I NEED TO REVIEW THIS TO WRITE IT MORE CLEARLY")
# FOR NOW ALPHA AND GAMMA ARE SWITCHED BECAUSE OF HOW THE ARRAYS ARE DEFINED.
# THINK ON HOW THIS COULD BE WRITTEN SO THAT IT'S EASIER TO UNDERSTAND (AND DEBUG)
# Value is within range of lower set of limits
range_ = 2 * (beta1 - alpha1)
s1 = (rad - alpha1) / range_

Paolo Veglio
committed
idx = np.nonzero((rad > alpha1) & (rad <= gamma1) & (rad <= beta1) & (alpha1 - gamma1 <= 0))
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
range_ = 2 * (beta1 - gamma1)
s1 = (rad - gamma1) / range_

Paolo Veglio
committed
idx = np.nonzero((rad > alpha1) & (rad <= gamma1) & (rad > beta1) & (alpha1 - gamma1 <= 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
# Values is within range of upper set of limits
range_ = 2 * (beta2 - alpha2)
s1 = (rad - alpha2) / range_

Paolo Veglio
committed
idx = np.nonzero((rad > gamma2) & (rad < alpha2) & (rad >= beta2) & (alpha1 - gamma1 <= 0))
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
range_ = 2 * (beta2 - gamma2)
s1 = (rad - gamma2) / range_

Paolo Veglio
committed
idx = np.nonzero((rad > gamma2) & (rad < alpha2) & (rad < beta2) & (alpha1 - gamma1 <= 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])

Paolo Veglio
committed
confidence[(alpha1 - gamma1 <= 0) & ((rad > gamma1) | (rad < gamma2))] = 0
confidence[(alpha1 - gamma1 <= 0) & (rad <= alpha1) & (rad >= alpha2)] = 1
# confidence = np.clip(confidence, 0, 1)
return confidence.reshape(radshape)
if __name__ == "__main__":

Paolo Veglio
committed
test_dble()