Newer
Older
import numpy as np
def test():
bt = np.arange(265, 275)
thr = np.array([267, 270, 273, 1, 1])
c = conf_test(bt, thr)
print(c)
def conf_test(rad, thr):
'''
Assuming a linear function between min and max confidence level, the plot below shows
how the confidence (y axis) is computed as function of radiance (x axis).
This case illustrates alpha < gamma, obviously in case alpha > gamma, the plot would be
flipped.
gamma
c 1 ________
o | /
n | /
f | /
i | beta /
d 1/2 |....../
e | /
n | /
c | /
e 0________/
| alpha
--------- radiance ---------->
'''
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
if thr.ndim == 1:
thr = np.full((rad.shape[0], 4), thr[:4]).T
coeff = np.power(2, (thr[3] - 1))
hicut = thr[2, :]
locut = thr[0, :]
confidence = np.zeros(rad.shape)
alpha, gamma = np.empty(rad.shape), np.empty(rad.shape)
flipped = np.zeros(rad.shape)
gamma[hicut > locut] = thr[2, hicut > locut]
alpha[hicut > locut] = thr[0, hicut > locut]
flipped[hicut > locut] = 0
gamma[hicut < locut] = thr[0, hicut < locut]
alpha[hicut < locut] = thr[2, hicut < locut]
flipped[hicut < locut] = 1
# Rad between alpha and beta
range_ = 2. * (beta - alpha)
s1 = (rad - alpha) / range_
idx = np.nonzero((rad <= beta) & (flipped == 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
idx = np.nonzero((rad <= beta) & (flipped == 1))
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
# Rad between beta and gamma
range_ = 2. * (beta - gamma)
s1 = (rad - gamma) / range_
idx = np.nonzero((rad > beta) & (flipped == 0))
confidence[idx] = 1.0 - coeff[idx] * np.power(s1[idx], power[idx])
idx = np.nonzero((rad > beta) & (flipped == 1))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
# Rad outside alpha-gamma interval
confidence[(rad > gamma) & (flipped is False)] = 1
confidence[(rad < alpha) & (flipped is False)] = 0
confidence[(rad > gamma) & (flipped is True)] = 0
confidence[(rad < alpha) & (flipped is True)] = 1
confidence[confidence > 1] = 1
confidence[confidence < 0] = 0
return confidence
def conf_test_dble(rad, coeffs):
# '''
# gamma1 gamma2
# c 1_______ ________
# o | \ /
# n | \ /
# f | \ /
# i | \ beta1 beta2 /
# d 1/2 \....| |...../
# e | \ /
# n | \ /
# c | \ /
# e 0 \_____________/
# | alpha1 alpha2
# --------------------- radiance ------------------------->
# '''
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
coeffs = np.array(coeffs)
radshape = rad.shape
rad = rad.reshape(np.prod(radshape))
confidence = np.zeros(rad.shape)
alpha1, gamma1 = np.empty(rad.shape), np.empty(rad.shape)
alpha2, gamma2 = np.empty(rad.shape), np.empty(rad.shape)
if coeffs.ndim == 1:
coeffs = np.full((rad.shape[0], 7), coeffs[:7]).T
gamma1 = coeffs[0, :]
beta1 = coeffs[1, :]
alpha1 = coeffs[2, :]
alpha2 = coeffs[3, :]
beta2 = coeffs[4, :]
gamma2 = coeffs[5, :]
power = coeffs[6, :]
coeff = np.power(2, (power - 1))
# radshape = rad.shape
# rad = rad.reshape((rad.shape[0]*rad.shape[1]))
### Find if interval between inner cutoffs passes or fails test
# Inner region fails test
# Value is within range of lower set of limits
range_ = 2. * (beta1 - alpha1)
s1 = (rad - alpha1) / range_
idx = np.nonzero((rad <= alpha1) & (rad >= beta1) & (alpha1 - gamma1 > 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
range_ = 2. * (beta1 - gamma1)
s1 = (rad - gamma1) / range_
idx = np.nonzero((rad <= alpha1) & (rad < beta1) & (alpha1 - gamma1 > 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
# Value is within range of upper set of limits
range_ = 2. * (beta2 - alpha2)
s1 = (rad - alpha2) / range_
idx = np.nonzero((rad > alpha1) & (rad <= beta2) & (alpha1 - gamma1 > 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
range_ = 2. * (beta2 - gamma2)
s1 = (rad - gamma2) / range_
idx = np.nonzero((rad > alpha1) & (rad > beta2) & (alpha1 - gamma1 > 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
# Check for value beyond function range
confidence[(rad > alpha1) & (rad < alpha2)] = 0
confidence[(rad < gamma1) | (rad > gamma2)] = 1
###
# Inner region passes test
# Value is within range of lower set of limits
range_ = 2 * (beta1 - alpha1)
s1 = (rad - alpha1) / range_
idx = np.nonzero((rad <= gamma1) & (rad <= beta1) & (alpha1 - gamma1 > 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
range_ = 2 * (beta1 - gamma1)
s1 = (rad - gamma1) / range_
idx = np.nonzero((rad <= gamma1) & (rad > beta1) & (alpha1 - gamma1 > 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
# Values is within range of upper set of limits
range_ = 2 * (beta2 - alpha2)
s1 = (rad - alpha2) / range_
idx = np.nonzero((rad > gamma1) & (rad >= beta2) & (alpha1 - gamma1 > 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
range_ = 2 * (beta2 - gamma2)
s1 = (rad - gamma2) / range_
idx = np.nonzero((rad > gamma1) & (rad < beta2) & (alpha1 - gamma1 > 0))
confidence[idx] = coeff[idx] * np.power(s1[idx], power[idx])
confidence[(rad > gamma1) & (rad < gamma2)] = 1
confidence[(rad < alpha1) & (rad > alpha2)] = 0
confidence[confidence > 1] = 1
confidence[confidence < 0] = 0
return confidence
if __name__ == "__main__":
test()