Newer
Older
import numpy as np
import xarray as xr
import ancillary_data as anc

Paolo Veglio
committed
from numpy.lib.stride_tricks import sliding_window_view

Paolo Veglio
committed
_dtr = np.pi/180
_DTR = np.pi/180
def prepare_11_12um_thresholds(thresholds: np.ndarray,
dim1: int) -> Dict:
coeff_values = np.empty((dim1, 2))
coeff_values[:, 0] = np.full(dim1, thresholds['coeffs'][0])
coeff_values[:, 1] = np.full(dim1, thresholds['coeffs'][1])
cmult_values = np.full(dim1, thresholds['cmult'])
adj_values = np.full(dim1, thresholds['adj'])
if 'bt1' in list(thresholds):
bt1 = np.full(dim1, thresholds['bt1'])

Paolo Veglio
committed
else:
bt1 = np.full(dim1, -999)
if 'lat' in list(thresholds):
lat = np.full(dim1, thresholds['lat'])

Paolo Veglio
committed
else:
lat = np.full(dim1, -999)
thr_dict = {'coeffs': coeff_values,
'cmult': cmult_values,
'adj': adj_values,
'bt1': bt1,
'lat': lat,
}
# function was called preproc
def thresholds_11_12um(data: xr.Dataset,
thresholds: np.ndarray,
scene: str,
scene_idx: np.ndarray) -> np.ndarray:
cosvza = np.cos(data.sensor_zenith[scene_idx].values.ravel() * _DTR)
schi = np.full(cosvza.shape, 99.0)
schi[cosvza > 0] = 1/cosvza
schi = np.array(schi, dtype=np.float32) # this is because the C function expects a float
m15 = data.M15.values[scene_idx].ravel()
latitude = data.latitude[scene_idx].values.ravel
thr = anc.py_cithr(1, schi, m15)
thr_dict = prepare_11_12um_thresholds(thresholds, m15.shape[0])
midpt = np.full(m15.shape[0], thr)
idx = np.nonzero((thr < 0.1) | (np.abs(schi-99) < 0.0001))
midpt[idx] = thr_dict['coeffs'][idx, 0]
locut = midpt + (thr_dict['cmult'] * midpt)

Paolo Veglio
committed
if scene in ['Land_Day', 'Land_Day_Coast', 'Land_Day_Desert', 'Land_Day_Desert_Coast',
'Ocean_Day', 'Ocean_Night', 'Polar_Day_Ocean', 'Polar_Night_Ocean']:
hicut = midpt - thr_dict['adj']

Paolo Veglio
committed
elif scene in ['Polar_Day_Land', 'Polar_Day_Coast', 'Polar_Day_Desert',
'Polar_Day_Desert_Coast', 'Polar_Day_Snow']:
hicut = midpt - (thr_dict['adj'] * midpt)

Paolo Veglio
committed
elif scene in ['Land_Night', 'Polar_Night_Land', 'Polar_Night_Snow', 'Day_Snow', 'Night_Snow']:
_coeffs = {'Land_Night': 0.3, 'Polar_Night_Land': 0.3, 'Polar_Night_Snow': 0.3,
'Day_Snow': 0.0, 'Night_Snow': 0.3}
midpt = midpt - (_coeffs[scene] * locut)
if scene in ['Polar_Night_Land', 'Polar_Night_Snow', 'Night_Snow']:
hicut = np.full(m15.shape, midpt - 1.25)
idx = np.nonzero(m15 < thr_dict['bt1'])
hicut[idx] = midpt[idx] - (0.2 * locut[idx])

Paolo Veglio
committed
elif scene in ['Land_Night']:
hicut = np.full(m15.shape, 1.25)
idx = np.nonzero((m15 < thr_dict['bt1']) & (latitude > thr_dict['lat']))
hicut[idx] = -0.1 - np.power(90.0 - np.abs(latitude[idx])/60, 4) * 1.15

Paolo Veglio
committed
elif scene in ['Day_Snow']:
hicut = locut - (thr_dict['cmult'] * locut)

Paolo Veglio
committed
else:
print('Scene not recognized\n')
else:
print('Scene not recognized\n')
thr_out = np.dstack((locut, midpt, hicut, np.ones(locut.shape), np.ones(locut.shape)))
return np.squeeze(thr_out.T)
def thresholds_NIR(data, thresholds, scene, test_name, scene_idx):
sza = data.solar_zenith.values[scene_idx].ravel()
band_n = 2
# NOTE: the visud condition in the C code is equivalent to having sza <= 85
# For the time being the visud filtering is not implemented
c = np.array(thresholds[scene][test_name]['coeffs'])
vzcpow = thresholds['VZA_correction']['vzcpow'][0]
refang = data.sunglint_angle.values[scene_idx].ravel()
sunglint_thresholds = thresholds['Sun_Glint']
sunglint_flag = utils.sunglint_scene(refang, sunglint_thresholds)
nir_thresh = thresholds[scene][test_name]
if test_name == 'NIR_Reflectance_Test':
hicut = c[0] + c[1]*sza + c[2]*np.power(sza, 2) + c[3]*np.power(sza, 3)
elif test_name == '1.6_2.1um_NIR_Reflectance_Test':
hicut = c[0] + c[1]*sza + c[2]*np.power(sza, 2) + c[3]*np.power(sza, 3) + c[4]*np.power(sza, 4)
else:
pass
hicut = (hicut * 0.01) + nir_thresh['adj']
hicut = (hicut * nir_thresh['bias'])
midpt = hicut + (nir_thresh['midpt_coeff'] * nir_thresh['bias'])
locut = midpt + (nir_thresh['locut_coeff'] * nir_thresh['bias'])
thr = np.array([locut, midpt, hicut, nir_thresh['thr'][3]*np.ones(refang.shape)])
cosvza = np.cos(data.sensor_zenith.values[scene_idx]*_DTR).ravel()
corr_thr = np.zeros((4, refang.shape[0]))
corr_thr[:3, sunglint_flag == 0] = thr[:3, sunglint_flag == 0] * (1./np.power(cosvza[sunglint_flag == 0],
vzcpow))
corr_thr[3, sunglint_flag == 0] = thr[3, sunglint_flag == 0]
for flag in range(1, 4):
if len(refang[sunglint_flag == flag]) > 0:
dosgref = utils.get_sunglint_thresholds(refang, sunglint_thresholds, band_n, flag, thr)
corr_thr[:3, sunglint_flag == flag] = dosgref[:3, sunglint_flag == flag] * \
(1./np.power(cosvza[sunglint_flag == flag], vzcpow))
corr_thr[3, sunglint_flag == flag] = dosgref[3, sunglint_flag == flag]
return corr_thr
def nir_refl(data, thresholds, scene_name):
sza = data.solar_zenith.values
thr_nir = thresholds[scene_name]['1.6_2.1um_NIR_Reflectance_Test']
coeffs = thr_nir['coeffs']
vzcpow = thresholds['VZA_correction']['vzcpow'][0]
refang = data.sunglint_angle.values.reshape(np.prod(data.sunglint_angle.shape))
sunglint_thresholds = thresholds['Sun_Glint']
sunglint_flag = utils.sunglint_scene(refang, sunglint_thresholds).reshape(refang.shape)
hicut0 = np.array(coeffs[0] + coeffs[1]*sza + coeffs[2]*np.power(sza, 2) +
coeffs[3]*np.power(sza, 3) + coeffs[4]*np.power(sza, 4))
hicut0 = (hicut0*0.01) + thr_nir['adj']
hicut0 = (hicut0*thr_nir['bias']).reshape(refang.shape)
midpt0 = hicut0 + (thr_nir['midpt_coeff']*thr_nir['bias'])
locut0 = midpt0 + (thr_nir['locut_coeff']*thr_nir['bias'])
thr = np.array([locut0, midpt0, hicut0, np.ones(refang.shape)])
cosvza = np.cos(data.sensor_zenith*_dtr).values.reshape(refang.shape)
corr_thr = np.zeros((4, refang.shape[0]))
corr_thr[:3, sunglint_flag == 0] = thr[:3, sunglint_flag == 0] * (1./np.power(cosvza[sunglint_flag == 0],
vzcpow))
corr_thr[3, sunglint_flag == 0] = thr[3, sunglint_flag == 0]
for flag in range(1, 4):
if len(refang[sunglint_flag == flag]) > 0:
dosgref = utils.get_sunglint_thresholds(refang, sunglint_thresholds, band_n, flag, thr)
corr_thr[:3, sunglint_flag == flag] = dosgref[:3, sunglint_flag == flag] * \
(1./np.power(cosvza[sunglint_flag == flag], vzcpow))
corr_thr[3, sunglint_flag == flag] = dosgref[3, sunglint_flag == flag]
corr_thr = np.transpose(corr_thr.reshape((4, sza.shape[0], sza.shape[1])), (1, 2, 0))
return corr_thr
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def preproc_surf_temp(data, thresholds):
thr_sfc1 = thresholds['Surface_Temperature_Test_1']
thr_sfc2 = thresholds['Surface_Temperature_Test_2']
thr_df1 = thresholds['Surface_Temperature_Test_df1']
thr_df2 = thresholds['Surface_Temperature_Test_df2']
max_vza = 70.13 # This values is set based on sensor. Check mask_processing_constants.h for MODIS value
rs = np.prod(data.M15.shape)
df1 = (data.M15 - data.M16).values.reshape(rs)
df2 = (data.M15 - data.M13).values.reshape(rs)
desert_flag = data.Desert.values.reshape(rs)
thresh = np.ones((rs, )) * thr_sfc1
idx = np.where((df1 >= thr_df1[0]) | ((df1 < thr_df1[0]) & ((df2 <= thr_df2[0]) | (df2 >= thr_df2[1]))))
thresh[idx] = thr_sfc2
idx = np.where(desert_flag == 1)
thresh[idx] == thr_sfc1
midpt = thresh
idx = np.where(df1 >= thr_df1[1])
midpt[idx] = thresh[idx] + 2.0*df1[idx]
corr = np.power(data.sensor_zenith.values/max_vza, 4) * 3.0
midpt = midpt.reshape(corr.shape) + corr
locut = midpt + 2.0
hicut = midpt - 2.0
thr_out = xr.DataArray(data=np.dstack((locut, midpt, hicut, np.ones(locut.shape), np.ones(locut.shape))),
dims=('number_of_lines', 'number_of_pixels', 'z'))
return thr_out
# This function is currently not used
def preproc_sst(data, thresholds):
m31c = data.M15 - 273.16
m32c = data.M16 - 273.16
m31c_m32c = m31c - m32c
sstc = data.geos_sfct - 273.16
cosvza = np.cos(data.sensor_zenith*_DTR)
a = thresholds['coeffs']
modsst = 273.16 + a[0] + a[1]*m31c + a[2]*m31c_m32c*sstc + a[3]*m31c_m32c*((1/cosvza) - 1)
sfcdif = data.geos_sfct - modsst
return sfcdif

Paolo Veglio
committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
def var_11um(data, thresholds):
rad = data.M15.values
var = np.zeros((rad.shape[0], rad.shape[1], 9))
var_thr = thresholds['Daytime_Ocean_Spatial_Variability']['dovar11']
test = sliding_window_view(np.pad(rad, [1, 1], mode='constant'), (3, 3)) - np.expand_dims(rad, (2, 3))
var[np.abs(test).reshape(rad.shape[0], rad.shape[1], 9) < var_thr] = 1
var = var.sum(axis=2)
return var
def get_b1_thresholds(data, thresholds):
ndvi = data.ndvi.values.reshape(data.ndvi.shape[0]*data.ndvi.shape[1])
sctang = data.scattering_angle.values.reshape(data.ndvi.shape[0]*data.ndvi.shape[1])
# this is hardcoded in the function
delta_ndvi_bin = 0.1
des_ndvi = thresholds['Misc']['des_ndvi']
thr_adj_fac_desert = thresholds['Misc']['adj_fac_desert']
thr_adj_fac_land = thresholds['Misc']['adj_fac_land']
ndvi_bnd1 = thresholds['Misc']['ndvi_bnd1']
ndvi_bnd2 = thresholds['Misc']['ndvi_bnd2']
fill_ndvi = thresholds['Misc']['fill_ndvi']
coeff1 = np.array(thresholds['Coeffs_Band1_land_thresh']).reshape(10, 3, 4)
coeff2 = np.zeros((10, 3, 4))
coeff2[:3, :, :] = np.array(thresholds['Coeffs_Band8_land_thresh']).reshape(3, 3, 4)
coeff = np.stack((coeff1, coeff2))
indvi = np.zeros(ndvi.shape)
indvi[ndvi >= ndvi_bnd2] = 9
x, y2 = np.zeros(ndvi.shape), np.zeros(ndvi.shape)
# this is equivalent to interp=1 in the C code
idx = np.nonzero((ndvi >= ndvi_bnd1) & (ndvi < ndvi_bnd2))
indvi[idx] = (ndvi[idx]/delta_ndvi_bin) - 0.5
indvi[ndvi < 0] = 0
x1 = delta_ndvi_bin*indvi + delta_ndvi_bin/2.0
x2 = x1 + delta_ndvi_bin
x[idx] = (ndvi[idx] - x1[idx])/(x2[idx] - x1[idx])
x = np.clip(x, 0, 1)
indvi = np.array(indvi, dtype=np.int)
thr = np.empty((ndvi.shape[0], 4))
thr_adj = np.empty((ndvi.shape[0], 4))
for i in range(3):
y1 = coeff[0, indvi, i, 0] + coeff[0, indvi, i, 1]*sctang + \
coeff[0, indvi, i, 2]*sctang**2 + coeff[0, indvi, i, 3]*sctang**3
des = np.nonzero(ndvi < des_ndvi)
y1[des] = coeff[1, indvi[des], i, 0] + coeff[1, indvi[des], i, 1]*sctang[des] + \
coeff[1, indvi[des], i, 2]*sctang[des]**2 + coeff[1, indvi[des], i, 3]*sctang[des]**3
y2[idx] = coeff[0, indvi[idx], i, 0] + \
coeff[0, indvi[idx], i, 1]*sctang[idx] + \
coeff[0, indvi[idx], i, 2]*sctang[idx]**2 + \
coeff[0, indvi[idx], i, 3]*sctang[idx]**3
idxdes = np.nonzero((ndvi >= ndvi_bnd1) & (ndvi < ndvi_bnd2) & (ndvi < des_ndvi))
y2[idxdes] = coeff[0, indvi[idxdes], i, 0] + \
coeff[0, indvi[idxdes], i, 1]*sctang[idxdes] + \
coeff[0, indvi[idxdes], i, 2]*sctang[idxdes]**2 + \
coeff[0, indvi[idxdes], i, 3]*sctang[idxdes]**3
thr[:, i] = (1.0 - x) + (x + y2)
thr_adj[:, i] = thr[:, i] * thr_adj_fac_desert
thr_adj[ndvi >= des_ndvi, i] = thr[ndvi >= des_ndvi, i] * thr_adj_fac_land
hicut = ((thr[:, 0] + thr_adj[:, 0])/100) # .reshape(data.ndvi.shape)
midpt = ((thr[:, 1] + thr_adj[:, 1])/100) # .reshape(data.ndvi.shape)
locut = ((thr[:, 2] + thr_adj[:, 2])/100) # .reshape(data.ndvi.shape)
idx = np.nonzero((ndvi >= fill_ndvi[0]) | (ndvi <= fill_ndvi[1]))
hicut[idx] = -999
midpt[idx] = -999
locut[idx] = -999
# out_thr = xr.DataArray(data=np.dstack((locut, midpt, hicut, np.ones(data.ndvi.shape),
# np.full(data.ndvi.shape, 2))),
# dims=('number_of_lines', 'number_of_pixels', 'z'))
#
# return out_thr
return locut, midpt, hicut

Paolo Veglio
committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
def get_pn_thresholds(data, thresholds, scene, test_name):
thresholds = thresholds[scene]
if ((test_name == '4-12um_BTD_Thin_Cirrus_Test') and (scene in ['Land_Night', 'Night_Snow']) or
(test_name == '7.3-11um_BTD_Mid_Level_Cloud_Test') and (scene == 'Land_Night')):
locut = thresholds[test_name]['thr'][0] * np.ones(data.M15.shape)
midpt = thresholds[test_name]['thr'][1] * np.ones(data.M15.shape)
hicut = thresholds[test_name]['thr'][2] * np.ones(data.M15.shape)
power = thresholds[test_name]['thr'][3] * np.ones(data.M15.shape)
out_thr = xr.DataArray(data=np.dstack((locut, midpt, hicut, np.ones(data.ndvi.shape), power)),
dims=('number_of_lines', 'number_of_pixels', 'z'))
return out_thr
rad = data.M15.values.reshape(data.M15.shape[0]*data.M15.shape[1])
bt_bounds = thresholds[test_name]['bt11_bounds']
locut, midpt = np.empty(rad.shape), np.empty(rad.shape)
hicut, power = np.empty(rad.shape), np.empty(rad.shape)
lo, hi = np.empty(rad.shape), np.empty(rad.shape)
lo_thr, hi_thr = np.empty(rad.shape), np.empty(rad.shape)
conf_range = np.empty(rad.shape)
idx = np.nonzero(rad < bt_bounds[0])
locut[idx] = thresholds[test_name]['low'][0]
midpt[idx] = thresholds[test_name]['low'][1]
hicut[idx] = thresholds[test_name]['low'][2]
power[idx] = thresholds[test_name]['low'][3]
idx = np.nonzero(rad > bt_bounds[3])
locut[idx] = thresholds[test_name]['high'][0]
midpt[idx] = thresholds[test_name]['high'][1]
hicut[idx] = thresholds[test_name]['high'][2]
power[idx] = thresholds[test_name]['high'][3]
# # # # #
idx = np.nonzero((rad >= bt_bounds[0]) & (rad <= bt_bounds[3]) &
(bt_bounds[1] == 0) & (bt_bounds[2] == 0))
lo[idx] = thresholds[test_name]['bt11_bounds'][0]
hi[idx] = thresholds[test_name]['bt11_bounds'][3]
lo_thr[idx] = thresholds[test_name]['mid1'][0]
hi_thr[idx] = thresholds[test_name]['mid1'][1]
power[idx] = thresholds[test_name]['mid1'][3]
conf_range[idx] = thresholds[test_name]['mid1'][2]
idx = np.nonzero((rad >= bt_bounds[0]) & (rad < bt_bounds[1]))
lo[idx] = thresholds[test_name]['bt11_bounds'][0]
hi[idx] = thresholds[test_name]['bt11_bounds'][1]
lo_thr[idx] = thresholds[test_name]['mid1'][0]
hi_thr[idx] = thresholds[test_name]['mid1'][1]
power[idx] = thresholds[test_name]['mid1'][3]
conf_range[idx] = thresholds[test_name]['mid1'][2]
idx = np.nonzero((rad >= bt_bounds[1]) & (rad < bt_bounds[2]))
lo[idx] = thresholds[test_name]['bt11_bounds'][1]
hi[idx] = thresholds[test_name]['bt11_bounds'][2]
lo_thr[idx] = thresholds[test_name]['mid2'][0]
hi_thr[idx] = thresholds[test_name]['mid2'][1]
power[idx] = thresholds[test_name]['mid2'][3]
conf_range[idx] = thresholds[test_name]['mid2'][2]
idx = np.nonzero((rad >= bt_bounds[2]) & (rad < bt_bounds[3]))
lo[idx] = thresholds[test_name]['bt11_bounds'][2]
hi[idx] = thresholds[test_name]['bt11_bounds'][3]
lo_thr[idx] = thresholds[test_name]['mid3'][0]
hi_thr[idx] = thresholds[test_name]['mid3'][1]
power[idx] = thresholds[test_name]['mid3'][3]
conf_range[idx] = thresholds[test_name]['mid3'][2]
idx = np.nonzero(((rad >= bt_bounds[0]) & (rad < bt_bounds[3])) |
(bt_bounds[1] == 0.0) | (bt_bounds[2] == 0))
a = (rad[idx] - lo[idx])/(hi[idx] - lo[idx])
midpt[idx] = lo_thr[idx] + (a*(hi_thr[idx] - lo_thr[idx]))
hicut[idx] = midpt[idx] - conf_range[idx]
locut[idx] = midpt[idx] + conf_range[idx]
locut = locut.reshape(data.M15.shape)
midpt = midpt.reshape(data.M15.shape)
hicut = hicut.reshape(data.M15.shape)
power = power.reshape(data.M15.shape)
out_thr = xr.DataArray(data=np.dstack((locut, midpt, hicut, np.ones(data.ndvi.shape), power)),
dims=('number_of_lines', 'number_of_pixels', 'z'))
return out_thr

Paolo Veglio
committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
def get_nl_thresholds(data, threshold):
lo_val = threshold['bt_diff_bounds'][0]
hi_val = threshold['bt_diff_bounds'][1]
lo_val_thr = threshold['nl_11_4m'][0]
hi_val_thr = threshold['nl_11_4m'][1]
conf_range = threshold['nl_11_4m'][2]
power = threshold['nl_11_4m'][3]
a = (data['M15-M16'].values - lo_val) / (hi_val - lo_val)
midpt = lo_val_thr + a*(hi_val_thr - lo_val_thr)
hicut = midpt - conf_range
locut = midpt + conf_range
idx = np.nonzero(data['M15-M16'].values > threshold['bt_diff_bounds'][0])
locut[idx] = threshold['nl_11_4l'][0]
midpt[idx] = threshold['nl_11_4l'][1]
hicut[idx] = threshold['nl_11_4l'][2]
power[idx] = threshold['nl_11_4l'][3]
idx = np.nonzero(data['M15-M16'].values < threshold['bt_diff_bounds'][1])
locut[idx] = threshold['nl_11_4h'][0]
midpt[idx] = threshold['nl_11_4h'][1]
hicut[idx] = threshold['nl_11_4h'][2]
power[idx] = threshold['nl_11_4h'][3]
out_thr = xr.DataArray(data=np.stack((locut, midpt, hicut, np.ones(data.M01.shape), power)),
dims=('number_of_lines', 'number_of_pixels', 'z'))
return out_thr

Paolo Veglio
committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
def vis_refl_thresholds(data, thresholds, scene):
locut, midpt, hicut = get_b1_thresholds(data, thresholds)
bias_adj = thresholds[scene]['Visible_Reflectance_Test']['adj']
ndvi = data.ndvi.values.reshape(data.ndvi.shape[0]*data.ndvi.shape[1])
m01 = data.M05.values.reshape(data.ndvi.shape[0]*data.ndvi.shape[1])
m02 = data.M07.values.reshape(data.ndvi.shape[0]*data.ndvi.shape[1])
m08 = data.M01.values.reshape(data.ndvi.shape[0]*data.ndvi.shape[1])
m128 = m01
b1_locut = locut * bias_adj
b1_midpt = midpt * bias_adj
b1_hicut = hicut * bias_adj
if ((scene == 'Land_Day_Desert') | (scene == 'Land_Day_Desert_Coast')):
ndvi_desert_thr = thresholds[scene]['Visible_Reflectance_Test']['ndvi_thr']
idx = np.nonzero(ndvi < ndvi_desert_thr)
b1_locut[idx] = locut[idx]
b1_midpt[idx] = midpt[idx]
b1_hicut[idx] = hicut[idx]
m128[idx] = m08[idx]
b1_power = np.full(b1_locut.shape, 2)
idx = np.nonzero(locut == -999)
b1_locut[idx] = thresholds[scene]['Visible_Reflectance_Test']['thr'][0]
b1_midpt[idx] = thresholds[scene]['Visible_Reflectance_Test']['thr'][1]
b1_hicut[idx] = thresholds[scene]['Visible_Reflectance_Test']['thr'][2]
b1_power[idx] = thresholds[scene]['Visible_Reflectance_Test']['thr'][3]
m128[idx] = m02[idx]
cosvza = np.cos(data.sensor_zenith.values * _dtr).reshape(ndvi.shape)
vzcpow = thresholds['VZA_correction']['vzcpow'][0]
b1_locut = (b1_locut * (1.0 / np.power(cosvza, vzcpow))).reshape(data.ndvi.shape)
b1_midpt = (b1_midpt * (1.0 / np.power(cosvza, vzcpow))).reshape(data.ndvi.shape)
b1_hicut = (b1_hicut * (1.0 / np.power(cosvza, vzcpow))).reshape(data.ndvi.shape)
out_thr = xr.DataArray(data=np.dstack((b1_locut, b1_midpt, b1_hicut, np.ones(data.ndvi.shape),
b1_power.reshape(data.ndvi.shape))),
dims=('number_of_lines', 'number_of_pixels', 'z'))
out_rad = xr.DataArray(data=m128.reshape(data.M01.shape), dims=('number_of_lines', 'number_of_pixels'))
return out_thr, out_rad

Paolo Veglio
committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
def GEMI_test(data, thresholds, scene_name):
thresh = thresholds[scene_name]['GEMI_Test']
gemi_thr = np.ones((data.M01.shape[0], data.M01.shape[1], 5))
idx = np.nonzero(data.ndvi < 0.1)
gemi_thr[idx[0], idx[1], :3] = thresh['gemi0'][:3]
idx = np.nonzero((data.ndvi >= 0.1) & (data.ndvi < 0.2))
gemi_thr[idx[0], idx[1], :3] = thresh['gemi1'][:3]
idx = np.nonzero((data.ndvi >= 0.2) & (data.ndvi < 0.3))
gemi_thr[idx[0], idx[1], :3] = thresh['gemi2'][:3]
thr_out = xr.DataArray(data=np.dstack((gemi_thr[:, :, 0], gemi_thr[:, :, 1], gemi_thr[:, :, 2],
np.ones(gemi_thr[:, :, 0].shape),
np.ones(gemi_thr[:, :, 0].shape))),
dims=('number_of_lines', 'number_of_pixels', 'z'))
return thr_out
def bt11_4um_preproc(data, thresholds, scene_name):
thresh = thresholds[scene_name]['11-4um_BT_Difference_Test']
c = thresh['coeffs']
tpw = data.geos_tpw.values
thr = c[0] + thresh['corr'] + c[1]*tpw + c[2]*np.power(tpw, 2)
hicut0 = (thr + thresh['hicut_coeff'][0]).reshape(1, np.prod(tpw.shape))
hicut1 = (thr + thresh['hicut_coeff'][1]).reshape(1, np.prod(tpw.shape))
midpt0 = (hicut0 + thresh['midpt_coeff'][0]).reshape(1, np.prod(tpw.shape))
midpt1 = (hicut1 + thresh['midpt_coeff'][1]).reshape(1, np.prod(tpw.shape))
locut0 = (hicut0 + thresh['locut_coeff'][0]).reshape(1, np.prod(tpw.shape))
locut1 = (hicut1 + thresh['locut_coeff'][1]).reshape(1, np.prod(tpw.shape))
thr_out = np.vstack([hicut0, midpt0, locut0, locut1, midpt1, hicut1,
np.ones(hicut0.shape), np.ones(hicut0.shape)])
return thr_out
def test_1_38um_preproc(data, thresholds, scene_name):
sza = data.solar_zenith.values
vza = data.sensor_zenith.values
thresh = thresholds[scene_name]['1.38um_High_Cloud_Test']
c = thresh['coeffs']
vzcpow = thresholds['VZA_correction']['vzcpow'][1]
hicut0 = c[0] + c[1]*sza + c[2]*np.power(sza, 2) + c[3]*np.power(sza, 3) + \
c[4]*np.power(sza, 4) + c[5]*np.power(sza, 5)
hicut0 = hicut0*0.01 + (np.maximum((sza/90.)*thresh['szafac']*thresh['adj'], thresh['adj']))
midpt0 = hicut0 + 0.001
locut0 = midpt0 + 0.001
cosvza = np.cos(vza*_dtr)
locut0 = locut0 * (1/np.power(cosvza, vzcpow))
midpt0 = midpt0 * (1/np.power(cosvza, vzcpow))
hicut0 = hicut0 * (1/np.power(cosvza, vzcpow))
out_thr = xr.DataArray(data=np.dstack((locut0, midpt0, hicut0, np.ones(data.ndvi.shape),
np.ones(data.ndvi.shape))),
dims=('number_of_lines', 'number_of_pixels', 'z'))
return out_thr
# NOTE: 11-12um Cirrus Test
# hicut is computed in different ways depending on the scene
# 1. midpt - adj
# - Land_Day
# - Land_Day_Coast
# - Land_Day_Desert
# - Land_Day_Desert_Coast
# - Ocean_Day
# - Ocean_Night
# - Polar_Day_Ocean
# - Polar_Night_Ocean
#
# 2. midpt - (btd_thr * adj)
# - Polar_Day_Land
# - Polar_Day_Coast
# - Polar_Day_Desert
# - Polar_Day_Desert_Coast
# - Polar_Day_Snow
#
# 3. Others
# - Land_Night
# - Polar_Night_Land
# - Polar_Night_Snow
# - Day_Snow
# - Night_Snow
# NOTE: 1.38um High Cloud Test
# thresholds are not always computed the same way. In group 1 there's no preprocessing required,
# in group 2 some calcuations are needed
# 1.
# - Land_Day
# - Land_Day_Coast
# - Land_Day_Desert
# - Land_Day_Desert_Coast
# - Polar_Day_Land
# - Polar_Day_Coast
# - Polar_Day_Desert
# - Polar_Day_Desert_Coast
# - Polar_Day_Snow
# - Day_Snow
#
# 2.
# - Ocean_Day
# - Polar_Ocean_Day