Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
MetObsCommon
Manage
Activity
Members
Plan
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Analyze
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
MetObs
MetObsCommon
Commits
02fcf257
Verified
Commit
02fcf257
authored
2 years ago
by
David Hoese
Browse files
Options
Downloads
Patches
Plain Diff
Fix NetCDF generation not including valid 0 for QC variables
parent
1367eb5c
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
README.rst
+3
-3
3 additions, 3 deletions
README.rst
metobscommon/util/nc.py
+16
-9
16 additions, 9 deletions
metobscommon/util/nc.py
with
19 additions
and
12 deletions
README.rst
+
3
−
3
View file @
02fcf257
...
...
@@ -133,14 +133,14 @@ Install averaging tasks to create average fields in the metobs_realtime bucket:
.. code-block:: bash
python -m metobscommon.influxdb
create_tasks -
-token <READ_WRITE_TOKEN>
python -m metobscommon.influxdb
--influxdb
-token <READ_WRITE_TOKEN>
create_tasks
Backfill InfluxDB Database
--------------------------
Insert data from an old tower file:
python -m aosstower.level_00.influxdb
-vvv --bulk 5000
--influxdb-token <READ_WRITE_TOKEN> /data1/raw/aoss/tower/2018/05/08/aoss_tower.2018-05-08.ascii
python -m aosstower.level_00.influxdb --influxdb-token <READ_WRITE_TOKEN>
-vvv --bulk 5000
/data1/raw/aoss/tower/2018/05/08/aoss_tower.2018-05-08.ascii
The above command sends data in blocks of 5000 records. This is to improve
performance of sending data to the InfluxDB instead of sending one record
...
...
@@ -148,7 +148,7 @@ at a time. A bulk value of 5000-10000 is preferred.
Compute the averages for 5 second tower and data:
python -m metobscommon.influxdb -vvv run_manual_average --stations aoss.tower -s 2018-05-07T00:00:00 -e 2018-05-08T22:00:00 -d 1m 5m 1h
--influxdb-token <READ_WRITE_TOKEN>
python -m metobscommon.influxdb
--influxdb-token <READ_WRITE_TOKEN>
-vvv run_manual_average --stations aoss.tower -s 2018-05-07T00:00:00 -e 2018-05-08T22:00:00 -d 1m 5m 1h
Note the above computes the 1m, 5m, and 1h averages. The time range (-s/-e)
must be at whole intervals for the average intervals specified otherwise
...
...
This diff is collapsed.
Click to expand it.
metobscommon/util/nc.py
+
16
−
9
View file @
02fcf257
...
...
@@ -9,6 +9,7 @@ This is used by instrument packages for generating Level B1 NetCDF4 files.
import
logging
import
numpy
as
np
import
pandas
as
pd
from
pandas.tseries.frequencies
import
to_offset
from
metobscommon.util
import
calc
LOG
=
logging
.
getLogger
(
__name__
)
...
...
@@ -188,13 +189,15 @@ def create_variables(nc_file, first_stamp, database, chunk_sizes=None, zlib=Fals
dimensions
=
dims
,
zlib
=
zlib
,
chunksizes
=
these_chunks
)
qcVariable
.
long_name
=
'
data quality
'
qcVariable
.
valid_range
=
np
.
byte
(
0b
1
),
np
.
byte
(
0b1111
)
qcVariable
.
flag_masks
=
np
.
byte
(
0b1
),
np
.
byte
(
0b10
),
np
.
byte
(
0b100
),
np
.
byte
(
0b1000
)
qcVariable
.
valid_range
=
np
.
byte
(
0b
0
),
np
.
byte
(
0b1111
)
qcVariable
.
flag_masks
=
np
.
byte
(
0b0
),
np
.
byte
(
0b1
),
np
.
byte
(
0b10
),
np
.
byte
(
0b100
),
np
.
byte
(
0b1000
)
flagMeaning
=
[
'
value is equal to missing_value
'
,
'
value is less than the valid min
'
,
'
value is greater than the valid max
'
,
'
difference between current and previous values exceeds valid_delta.
'
]
flagMeaning
=
[
'
value is valid
'
,
'
value is equal to missing_value
'
,
'
value is less than the valid min
'
,
'
value is greater than the valid max
'
,
'
difference between current and previous values exceeds valid_delta.
'
]
qcVariable
.
flag_meaning
=
'
,
'
.
join
(
flagMeaning
)
...
...
@@ -250,11 +253,13 @@ def minute_averages(frame):
frame
[
'
wind_east
'
],
frame
[
'
wind_north
'
],
_
=
calc
.
wind_vector_components
(
frame
[
'
wind_speed
'
],
frame
[
'
wind_dir
'
])
# round up each 1 minute group so data at time T is the average of data
# from T - 1 (exclusive) to T (inclusive).
new_frame
=
frame
.
resample
(
'
1T
'
,
closed
=
'
right
'
,
loffset
=
'
1T
'
).
mean
()
new_frame
=
frame
.
resample
(
'
1T
'
,
closed
=
'
right
'
).
mean
()
new_frame
.
index
=
new_frame
.
index
+
to_offset
(
"
1T
"
)
# 2 minute rolling average of 5 second data (5 seconds * 24 = 120 seconds = 2 minutes)
winds_frame_5s
=
frame
[[
'
wind_speed
'
,
'
wind_east
'
,
'
wind_north
'
]]
winds_frame_5s
=
winds_frame_5s
.
resample
(
'
5S
'
,
closed
=
'
right
'
,
loffset
=
'
5S
'
).
mean
()
winds_frame_5s
=
winds_frame_5s
.
resample
(
'
5S
'
,
closed
=
'
right
'
).
mean
()
winds_frame_5s
.
index
=
winds_frame_5s
.
index
+
to_offset
(
'
5S
'
)
winds_frame_2m
=
winds_frame_5s
.
rolling
(
24
,
win_type
=
'
boxcar
'
).
mean
()
# rolling average is used for 1 minute output
...
...
@@ -265,7 +270,9 @@ def minute_averages(frame):
gust
=
calculate_wind_gust
(
winds_frame_5s
[
'
wind_speed
'
],
winds_frame_2m
[
'
wind_speed
'
])
# "average" the gusts to minute resolution to match the rest of the data
new_frame
[
'
gust
'
]
=
gust
.
resample
(
'
1T
'
,
closed
=
'
right
'
,
loffset
=
'
1T
'
).
max
()
new_gust
=
gust
.
resample
(
'
1T
'
,
closed
=
'
right
'
).
max
()
new_gust
.
index
=
new_gust
.
index
+
to_offset
(
'
1T
'
)
new_frame
[
'
gust
'
]
=
new_gust
return
new_frame
.
fillna
(
np
.
nan
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment