Skip to content
Snippets Groups Projects
Unverified Commit dd95488c authored by David Hoese's avatar David Hoese
Browse files

Finalize behavior of averaging wind properties in summary file

parent 5a00ce2e
No related branches found
No related tags found
No related merge requests found
......@@ -207,7 +207,7 @@ def calculate_wind_gust(wind_speed_5s, wind_speed_2m):
"""
# 1 minute rolling peaks
wind_peak_1m = wind_speed_5s.rolling(window=12, center=False).max()
wind_peak_1m = wind_speed_5s.rolling(window='1T', center=False).max()
# criteria for a fast wind to be considered a wind gust
gust_mask = (wind_speed_2m >= KNOTS_9) & \
(wind_peak_1m >= wind_speed_2m + KNOTS_5)
......@@ -215,9 +215,9 @@ def calculate_wind_gust(wind_speed_5s, wind_speed_2m):
# determine highest gust in the last 10 minutes
# 5 seconds * 120 = 10 minutes
max_10m_gusts = gusts.rolling(window=120, center=False).max()
max_10m_gusts = gusts.rolling(window='10T', center=False).max()
# Minimum 5-second average in the past 10 minutes
min_10m_5avg = wind_speed_5s.rolling(window=120, center=False).min()
min_10m_5avg = wind_speed_5s.rolling(window='10T', center=False).min()
# criteria for a wind gust to be reportable
reportable_mask = (max_10m_gusts >= wind_speed_2m + KNOTS_3) & \
(wind_speed_2m > KNOTS_2) & \
......@@ -264,7 +264,7 @@ def summary_over_interval(frame, interval_width):
# the value at time X is for the data X - interval_width minutes
exclude = ['gust', 'wind_east', 'wind_north']
include = [c for c in frame.columns if c not in exclude]
gb = frame[include].resample(interval_width, closed='right', loffset=interval_width)
gb = frame[include].resample(interval_width, closed='left')
low = gb.min()
low.rename(columns=lambda x: x + "_min", inplace=True)
......@@ -276,8 +276,8 @@ def summary_over_interval(frame, interval_width):
out_frames = pd.concat((low, high, mean), axis=1)
# wind fields need to be handled specially
ws_min_idx = frame['wind_speed'].resample(interval_width, closed='right', loffset=interval_width).apply(lambda arr_like: arr_like.argmin())
ws_max_idx = frame['wind_speed'].resample(interval_width, closed='right', loffset=interval_width).apply(lambda arr_like: arr_like.argmax())
ws_min_idx = frame['wind_speed'].resample(interval_width, closed='left').apply(lambda arr_like: arr_like.argmin())
ws_max_idx = frame['wind_speed'].resample(interval_width, closed='left').apply(lambda arr_like: arr_like.argmax())
# probably redundant but need to make sure the direction indexes are
# the same as those used in the wind speed values
# must use .values so we don't take data at out_frames index, but rather
......@@ -286,11 +286,11 @@ def summary_over_interval(frame, interval_width):
out_frames['wind_speed_max'] = frame['wind_speed'][ws_max_idx].values
out_frames['wind_speed_min_dir'] = calc.wind_vector_degrees(frame['wind_east'][ws_min_idx], frame['wind_north'][ws_min_idx]).values
out_frames['wind_speed_max_dir'] = calc.wind_vector_degrees(frame['wind_east'][ws_max_idx], frame['wind_north'][ws_max_idx]).values
we = frame['wind_east'].resample(interval_width, closed='right', loffset=interval_width).mean()
wn = frame['wind_north'].resample(interval_width, closed='right', loffset=interval_width).mean()
we = frame['wind_east'].resample(interval_width, closed='left').mean()
wn = frame['wind_north'].resample(interval_width, closed='left').mean()
out_frames['wind_speed_mean_dir'] = calc.wind_vector_degrees(we, wn).values
gust_idx = frame['gust'].resample(interval_width, closed='right', loffset=interval_width).apply(lambda arr_like: arr_like.argmax())
gust_idx = frame['gust'].resample(interval_width, closed='left').apply(lambda arr_like: arr_like.argmax())
# gusts may be NaN so this argmax will be NaN indexes which don't work great
gust_idx = gust_idx.astype('datetime64[ns]', copy=False)
peak_gust = frame['gust'][gust_idx]
......@@ -397,13 +397,11 @@ def create_giant_netcdf(input_files, output_fn, zlib, chunk_size,
frame['wind_east'], frame['wind_north'], _ = calc.wind_vector_components(frame['wind_speed'], frame['wind_dir'])
# round up each 1 minute group so data at time T is the average of data
# from T - 1 (exclusive) to T (inclusive).
# new_frame = frame.resample('1T', closed='right', loffset='1T').mean()
new_frame = frame.resample('5S', closed='right', loffset='5S').mean()
# 2 minute rolling average of 5 second data (5 seconds * 24 = 120 seconds = 2 minutes)
winds_frame_5s = new_frame[['wind_speed', 'wind_east', 'wind_north']]
# winds_frame_5s = winds_frame_5s.resample('5S', closed='right', loffset='5S').mean()
winds_frame_2m = winds_frame_5s.rolling(24, win_type='boxcar').mean()
winds_frame_2m = winds_frame_5s.rolling('2T').mean()
winds_frame_2m['gust'] = calculate_wind_gust(winds_frame_5s['wind_speed'], winds_frame_2m['wind_speed'])
# rolling average is used for mean output
......@@ -415,9 +413,6 @@ def create_giant_netcdf(input_files, output_fn, zlib, chunk_size,
frame = summary_over_interval(new_frame, interval_width)
else:
frame = new_frame.resample(interval_width, closed='right', loffset=interval_width).mean()
# gust_idx = new_frame['gust'].resample(interval_width, closed='right', loffset=interval_width).apply(lambda arr_like: arr_like.argmax())
# frame['gust'][:] = new_frame['gust'][gust_idx.values]
# frame['wind_dir'] = calc.wind_vector_degrees(frame['wind_east'][gust_idx.values], frame['wind_north'][gust_idx.values])
frame['wind_dir'] = calc.wind_vector_degrees(frame['wind_east'], frame['wind_north'])
frame['gust'] = new_frame['gust'].resample(interval_width, closed='right', loffset=interval_width).max()
frame.fillna(np.nan, inplace=True)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment