Skip to content
Snippets Groups Projects
Commit 9e7da3bf authored by William Roberts's avatar William Roberts
Browse files

Merge master into wunderground

parents d5d1ebec d997cf22
No related branches found
No related tags found
No related merge requests found
......@@ -15,6 +15,7 @@ from metobscommon.util import calc
from metobscommon.util.nc import calculate_wind_gust
import numpy as np
import pandas as pd
import warnings
LOG = logging.getLogger(__name__)
# map station name to InfluxDB tags
......@@ -54,53 +55,30 @@ SYMBOLS = list(SYMBOL_CONVERSIONS.values())
class Updater(object):
"""https://feedback.weather.com/customer/en/portal/articles/2924682-pws-upload-protocol?b_id=17298"""
"""Append weather record (taken as a dict) and do averages when enough data is ready.
At least 12 minutes of data is required to do averaging: 10 minutes of wind gusts,
and wind gusts need 2 minutes of data to calculate.
This class is created once at startup and calls rolling_average every time new data is available which tries to do
averaging every 5 minutes of data added.
"""
def __init__(self):
# Counter that returns rolling average every 5 minutes. independent of
# self.data since its length can be 144 == 12 minutes.
# self.data since self.data length can be 144 == 12 minutes.
self.counter = 0
self.data = {}
def rolling_average(self, record):
KNOTS_9 = calc.knots_to_mps(9.)
KNOTS_5 = calc.knots_to_mps(5.)
self.counter += 1
database = {k: schema.database_dict[k] for k in schema.met_vars}
# Add new data to dict.
for key in record:
self.data.setdefault(key, []).append(record[key])
# 4:50 and 4:45. http://metobs.ssec.wisc.edu/aoss/tower/cgi-bin/data_data.py?&separator=,
# &symbols=p:t:td:dir:spd:flux:accum_precip:rh&begin=-00:05:00&end=&interval=
# If 5 minutes of data are ready, average current data in dict (up to 15 minutes until data is
# dropped for the first time, then up to 12 minutes thereafter are held). 60 * 5 seconds = 5 minutes.
if self.counter % 60 == 0:
# Appending to a DataFrame is slow. Instead add to a dict in chunks and pass it to the DataFrame.
frame = pd.DataFrame(self.data)
frame.set_index('timestamp', inplace=True)
frame.mask(frame == -99999., inplace=True)
frame.fillna(value=np.nan, inplace=True)
# Add wind direction components so we can average wind direction properly
frame['wind_east'], frame['wind_north'], _ = calc.wind_vector_components(frame['wind_speed'],
frame['wind_dir'])
frame['wind_dir'] = calc.wind_vector_degrees(frame['wind_east'], frame['wind_north'])
if 'air_temp' in frame and 'rh' in frame and ('dewpoint' in database or 'dewpoint_mean' in database):
LOG.info("'dewpoint' is missing from the input file, will calculate "
"it from air temp and relative humidity")
frame['dewpoint'] = calc.dewpoint(frame['air_temp'], frame['rh'])
# 2 minute rolling average of 5 second data.
winds_frame_2m = frame[['wind_speed', 'wind_east', 'wind_north']].rolling('2T').mean()
frame['wind_speed_2m'] = winds_frame_2m['wind_speed']
frame['wind_dir_2m'] = calc.wind_vector_degrees(winds_frame_2m['wind_east'], winds_frame_2m['wind_north'])
# TODO: PEAK_DIR IS THE 5 SEC MAX FROM LAST MINUTE IF 5 KTS OVER LAST 2 MINUTE AVG.
# 1 minute rolling peaks
wind_peak_1m = frame['wind_speed'].rolling(window='1T', center=False).max()
# criteria for a fast wind to be considered a wind gust
gust_mask = (winds_frame_2m['wind_speed'] >= KNOTS_9) &\
(wind_peak_1m >= winds_frame_2m['wind_speed'] + KNOTS_5)
frame['cur_gust'] = wind_peak_1m.mask(~gust_mask)
frame['gust_10m'] = calculate_wind_gust(frame['wind_speed'], winds_frame_2m['wind_speed'])
# Appending to a DataFrame is slow. Instead, this adds to a dict in chunks and passes it to the DataFrame.
frame = self._calculate_averages()
# Keep data set within minimum window to improve speed.
# Wind gusts looks at 10 minute intervals, including the first data point which needs 2 minutes of data
# before it, totalling 12 minutes. Since data is sent every 5 minutes, at 15+ minutes we should
......@@ -111,11 +89,43 @@ class Updater(object):
self.data[key] = val[-84:]
self.counter -= 60
else:
# Make 10 minute gusts at or before 10 minutes nans because data is insufficient.
# Make 10 minute gusts before 12 minutes nans because data is insufficient.
frame['gust_10m'].mask(frame['gust_10m'] > -1., inplace=True)
frame.fillna(np.nan, inplace=True)
return frame
def _calculate_averages(self):
frame = pd.DataFrame(self.data)
KNOTS_9 = calc.knots_to_mps(9.)
KNOTS_5 = calc.knots_to_mps(5.)
database = {k: schema.database_dict[k] for k in schema.met_vars}
frame.set_index('timestamp', inplace=True)
frame.mask(frame == -99999., inplace=True)
frame.fillna(value=np.nan, inplace=True)
# Add wind direction components so we can average wind direction properly
frame['wind_east'], frame['wind_north'], _ = calc.wind_vector_components(frame['wind_speed'],
frame['wind_dir'])
frame['wind_dir'] = calc.wind_vector_degrees(frame['wind_east'], frame['wind_north'])
if 'air_temp' in frame and 'rh' in frame and ('dewpoint' in database or 'dewpoint_mean' in database):
LOG.info("'dewpoint' is missing from the input file, will calculate "
"it from air temp and relative humidity")
frame['dewpoint'] = calc.dewpoint(frame['air_temp'], frame['rh'])
# 2 minute rolling average of 5 second data.
winds_frame_2m = frame[['wind_speed', 'wind_east', 'wind_north']].rolling('2T').mean()
frame['wind_speed_2m'] = winds_frame_2m['wind_speed']
frame['wind_dir_2m'] = calc.wind_vector_degrees(winds_frame_2m['wind_east'], winds_frame_2m['wind_north'])
# TODO: PEAK_DIR IS THE 5 SEC MAX FROM LAST MINUTE IF 5 KTS OVER LAST 2 MINUTE AVG.
# 1 minute rolling peaks
wind_peak_1m = frame['wind_speed'].rolling(window='1T', center=False).max()
# criteria for a fast wind to be considered a wind gust
gust_mask = (winds_frame_2m['wind_speed'] >= KNOTS_9) &\
(wind_peak_1m >= winds_frame_2m['wind_speed'] + KNOTS_5)
frame['cur_gust'] = wind_peak_1m.mask(~gust_mask)
frame['gust_10m'] = calculate_wind_gust(frame['wind_speed'], winds_frame_2m['wind_speed'])
return frame
def convert_to_influx_frame(record_gen, symbols, debug=False):
for idx, record in enumerate(record_gen):
......@@ -127,6 +137,56 @@ def convert_to_influx_frame(record_gen, symbols, debug=False):
yield record
def construct_url(data):
return ('http://weatherstation.wunderground.com/weatherstation/updateweatherstation.php?'
'ID={ID}&'
'PASSWORD={PASSWORD}&'
'action=updateraw&'
'dateutc={dateutc}&'
'winddir={winddir}&'
'winddir_avg2m={winddir_avg2m}&'
'windspeedmph={windspeedmph}&'
'windspdmph_avg2m={windspdmph_avg2m}&'
'windgustmph={windgustmph}&'
'windgustmph_10m={windgustmph_10m}&'
'humidity={humidity}&'
'tempf={tempf}&'
'baromin={baromin}&'
'dewptf={dewptf}&'
'solarradiation={solarradiation}&'
'rainin={rainin}&'
'dailyrainin={dailyrainin}&'
'softwaretype=SSEC-RIG').format(**data)
def get_url_data(avg, wu_id, wu_pw):
# Information on what paramaters that can be sent:
# https://feedback.weather.com/customer/en/portal/articles/2924682-pws-upload-protocol?b_id=17298
# For timestamp, want YYYY-MM-DD+hh:mm:ss of last dataset that was averaged, rounded up to nearest minute.
timestamp = avg.index[-1].round('1T').isoformat('+')
wind_dir = avg['wind_dir'][-1]
wind_dir_2m = avg['wind_dir_2m'][-1]
# Converts from m/s to mph.
wind_speed = avg['wind_speed'][-1] * 2.23694
wind_speed_2m = avg['wind_speed_2m'][-1] * 2.23694
cur_gust = avg['cur_gust'][-1] * 2.23694
gust_10m = avg['gust_10m'][-1] * 2.23694
rel_hum = avg['rel_hum'][-1]
# Converts degrees Celsius to degrees Fahrenheit
air_temp = avg['air_temp'][-1] * 9. / 5. + 32.
# hpa to barometric pressure inches
pressure = avg['pressure'][-1] * 0.02952998016471232
# degrees Celcus to degrees Fahrenheit.
dewpoint = avg['dewpoint'][-1] * 9. / 5. + 32.
solar_flux = avg['solar_flux'][-1]
precip = avg['precip'][-1]
accum_precip = avg['accum_precip'][-1]
return {'ID': wu_id, 'PASSWORD': wu_pw, 'dateutc': timestamp, 'winddir': wind_dir, 'winddir_avg2m': wind_dir_2m,
'windspeedmph': wind_speed, 'windspdmph_avg2m': wind_speed_2m, 'windgustmph': cur_gust,
'windgustmph_10m': gust_10m, 'humidity': rel_hum, 'tempf': air_temp, 'baromin': pressure,
'dewptf': dewpoint, 'solarradiation': solar_flux, 'rainin': precip, 'dailyrainin': accum_precip}
def main():
import argparse
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
......@@ -194,6 +254,7 @@ def main():
influxdb.insert(lines, host=args.host, port=args.port, dbname=args.dbname)
# Record is in a list of size 1, but want just the record.
avg = updater.rolling_average(record[0])
<<<<<<< HEAD
# Once every 5 minutes: 0 through 295 seconds inclusive.
if avg is not None:
# For timestamp, want YYYY-MM-DD+hh:mm:ss of last dataset that was averaged, rounded up to nearest minute.
......@@ -244,6 +305,16 @@ def main():
resp = requests.post(url)
if resp != 'success':
raise ValueError('Data not received.')
=======
# Once every 5 minutes: 0 through 295 seconds inclusive in 5 second intervals.
if avg is not None:
url = construct_url(get_url_data(avg, args.wu_id, wu_pw))
if wu_pw and args.ldmp:
resp = requests.post(url)
if resp.status_code != 200:
warnings.warn('Data failed to upload to {0} with status code {1}: {2}'.format(
url, resp.status_code, resp.text))
>>>>>>> master
if args.sleep_interval:
time.sleep(args.sleep_interval)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment