Skip to content
Snippets Groups Projects
nc.py 17.1 KiB
Newer Older
kgao's avatar
kgao committed
import os
import sys
import logging
import pandas as pd
from datetime import datetime as dt
from aosstower.l00 import parser
from netCDF4 import Dataset
import numpy as np 
import platform
from aosstower import station
from datetime import timedelta as delta
kgao's avatar
kgao committed

LOG = logging.getLogger(__name__)


#create the '_mean','_low','_high' file structure
def make_mean_dict(source_dict):
    dest_dict = {}
    for key in source_dict:
        dest_dict[key+'_high'] = source_dict[key]
        dest_dict[key+'_mean'] = source_dict[key]
        dest_dict[key+'_low'] = source_dict[key]
    return dest_dict

mean_database = make_mean_dict(parser.database)

kgao's avatar
kgao committed
def filterArray(array, valid_min, valid_max):
kgao's avatar
kgao committed

kgao's avatar
kgao committed
    qcControl = []

    for value in array:
kgao's avatar
kgao committed
        if value == float(-99999):
kgao's avatar
kgao committed
            qcControl.append(np.byte(0b1))

kgao's avatar
kgao committed
        elif valid_min != '' and value < float(valid_min):
kgao's avatar
kgao committed
            qcControl.append(np.byte(0b10))
 
kgao's avatar
kgao committed
        elif valid_max != '' and value > float(valid_max):
kgao's avatar
kgao committed
            qcControl.append(np.byte(0b100))
 
        else:
            qcControl.append(np.byte(0b0))

    return np.array(qcControl)

kgao's avatar
kgao committed
# The purpose of this function is to write the dimensions
# for the nc file
# no parameters
# no returns

kgao's avatar
kgao committed
def writeDimensions(ncFile):
kgao's avatar
kgao committed
    ncFile.createDimension('time', None)
    ncFile.createDimension('max_len_station_name', 32)
kgao's avatar
kgao committed

kgao's avatar
kgao committed
    return ncFile

def createVariables(ncFile, firstStamp, chunksizes, zlib, database=parser.database):
kgao's avatar
kgao committed
    #base_time long name
    btln = 'base time as unix timestamp'

    #base time units
    btu = 'seconds since 1970-01-01 00:00:00'

    #base time string
    bts = firstStamp.strftime('%Y-%m-%d 00:00:00Z')

    #time long name
    tln = 'time offset from base_time'
kgao's avatar
kgao committed

    #time units
    tu = 'seconds since ' + firstStamp.strftime('%Y-%m-%d 00:00:00Z')

kgao's avatar
kgao committed
    coordinates = {
                      #fields: type, dimension, fill, valid_min, std_name, longname, units, valid_max, cf_role, axis
kgao's avatar
kgao committed
                      'lon': [np.float32, None, float(-999), '-180L', 'longitude', None, 'degrees_east', '180L', None],
                      'lat': [np.float32, None, float(-999), '-90L', 'latitude', None, 'degrees_north', '90L', None],
                      'alt': [np.float32, None, float(-999), None, 'height', 'vertical distance', 'm', None, None],
                      'base_time': [np.int32, None, float(-999), None, 'time', btln, btu, None, None],
                      'time_offset': [np.float64, 'time', float(-999), None, 'time', tln, tu, None, None],
                      'station_name': ['c', 'max_len_station_name', '-', None, None, 'station name', None, None, 'timeseries_id'],   
                      'time': [np.float32, 'time', float(-999), None, None, "Time offset from epoch", "seconds since 1970-01-01 00:00:00Z", None, None, None]
kgao's avatar
kgao committed
                  }

    for key in coordinates:
        attr = coordinates[key]

        if(attr[1]):
            if attr[1] == 'max_len_station_name':
                if (chunksizes) and chunksizes[0] > 32:
                    variable = ncFile.createVariable(key, attr[0], dimensions=(attr[1]), fill_value=attr[2], zlib=zlib, chunksizes=[32])
kgao's avatar
kgao committed

                else:
                    variable = ncFile.createVariable(key, attr[0], dimensions=(attr[1]), fill_value=attr[2], zlib=zlib, chunksizes=chunksizes)

            else:
                variable = ncFile.createVariable(key, attr[0], dimensions=(attr[1]), fill_value=attr[2], zlib=zlib, chunksizes=chunksizes)
kgao's avatar
kgao committed
        else:
kgao's avatar
kgao committed
            variable = ncFile.createVariable(key, attr[0], fill_value=attr[1], zlib=zlib, chunksizes=chunksizes)
kgao's avatar
kgao committed

        #create var attributes
        if key == 'alt':
            variable.positive = 'up'
            variable.axis = 'Z'

        if(attr[3]):
            variable.valid_min = attr[3]
            variable.valid_max = attr[7]

        if(attr[4]):
            variable.standard_name = attr[4]

        if(attr[5]):
            variable.long_name = attr[5]

        if(attr[6]):
            variable.units = attr[6]

        if(attr[8]):
             variable.cf_role = attr[8]

        if key == 'base_time':
            variable.string = bts

        if 'time' in key:
            variable.calendar = 'gregorian' 

kgao's avatar
kgao committed
        if(entry == 'stamp'):
            continue

kgao's avatar
kgao committed
        
        variable = ncFile.createVariable(entry, np.float32,
kgao's avatar
kgao committed
        dimensions=('time'), fill_value=float(-99999), zlib=zlib, chunksizes=chunksizes)
kgao's avatar
kgao committed
        variable.standard_name = varTup[1]
        variable.description = varTup[3]
        variable.units = varTup[4]

        if(varTup[5] != ''):
            variable.valid_min = float(varTup[5])
            variable.valid_max = float(varTup[6])

kgao's avatar
kgao committed
        qcVariable = ncFile.createVariable('qc_' + entry, 'b',
        dimensions=('time'), fill_value=0b0,  zlib=zlib, chunksizes=chunksizes)

        qcVariable.long_name = 'data quality'
        qcVariable.valid_range = np.byte(0b1), np.byte(0b1111)
        qcVariable.flag_masks = np.byte(0b1), np.byte(0b10), np.byte(0b100), np.byte(0b1000)

        flagMeaning = ['value is equal to missing_value', 
                       'value is less than the valid min', 
                       'value is greater than the valid max',
                       'difference between current and previous values exceeds valid_delta.']

        qcVariable.flag_meaning = ', '.join(flagMeaning)

kgao's avatar
kgao committed
    #create global attributes
    ncFile.source = 'surface observation'
kgao's avatar
kgao committed
    ncFile.conventions = 'ARM-1.2 CF-1.6'
kgao's avatar
kgao committed
    ncFile.institution = 'UW SSEC'
    ncFile.featureType = 'timeSeries'
kgao's avatar
kgao committed
    ncFile.data_level = 'b1'

    #monthly files end with .month.nc
    #these end with .day.nc

kgao's avatar
kgao committed
    ncFile.datastream = 'aoss.tower.nc-1d-1m.b1.v00'
    ncFile.software_version = '00'
kgao's avatar
kgao committed

    #generate history
    ncFile.history = ' '.join(platform.uname()) + " " + os.path.basename(__file__)
    
    return ncFile

kgao's avatar
kgao committed
def getGust(rollingAvg, speeds):
    averages = rollingAvg.tolist()
    maxSpeed = speeds['wind_speed'].tolist()

    gust = []

    for idx, average in enumerate(averages):
        if not average:
             gust.append(np.nan)
             continue

        elif average >= 4.63 and maxSpeed[idx] > average + 2.573:
              gust.append(maxSpeed[idx])

        else:
            gust.append(np.nan)
            continue

    return gust

kgao's avatar
kgao committed
#gets the rolling mean closest to the nearest minute
def getRolling(series, minutes):
    returnSeries = series.rolling(25, win_type='boxcar').mean()

    data = {}

    for minute in minutes:

        #doesn't go past the minute
        closestStamp = returnSeries.index.asof(minute)
        data[minute] = returnSeries[returnSeries.index.asof(minute)]

    returnSeries = pd.Series(data)
    
    return returnSeries

def getNewWindDirection(wind_dir, wind_speed, stamps):
    newWindDir = {}

    for stamp in stamps:
        before = stamp - delta(minutes=1)

        if before not in wind_speed.index:
            newWindDir[stamp] = None

        else:
            speed = wind_speed[before: stamp].tolist()
            dire = wind_dir[before: stamp].tolist()

            wind_dire = calc.mean_wind_vector(speed, dire)[0]
            
            newWindDir[stamp] = wind_dire
    
    return pd.Series(newWindDir)

def minuteAverages(frame):
    frame['minute'] = [(ts + delta(minutes=1)).replace(second=0) for ts in frame.index]
    newFrame = frame.groupby('minute').mean()
    newFrame.index.names = ['']
    columns = list(newFrame.columns.values)
    if 'wind_speed' in columns:
        del newFrame['wind_speed']

        windSeries = frame['wind_speed']

kgao's avatar
kgao committed
        windSeries = getRolling(windSeries, list(newFrame.index))

        newFrame['wind_speed'] = windSeries
kgao's avatar
kgao committed
  
        rollingAvg = newFrame['wind_speed']
kgao's avatar
kgao committed
        maxSpeed = pd.DataFrame()
        maxSpeed['minute'] = frame['minute']
        maxSpeed['speed'] = frame['wind_speed']

        maxSpeed = frame.groupby('minute').max()

        gust = getGust(rollingAvg, maxSpeed)

        newFrame['gust'] = gust
    
    if 'wind_dir' in columns:
        del newFrame['wind_dir']

        dupFrame = frame.set_index('minute')

        stamps = newFrame.index
        windDirSeries = dupFrame['wind_dir']
        windSeries = dupFrame['wind_speed']
        windDirSeries = getNewWindDirection(windDirSeries, windSeries, stamps)

        newFrame['wind_dir'] = windDirSeries
    del frame['minute']

    return newFrame.fillna(-99999)

def averageOverInterval(frame,interval_width):
    """takes a frame and an interval to average it over, and returns a minimum,
    maximum, and average dataframe for that interval"""
    ts = frame.index
    #round each timestamp to the nearest n minutes
    frame['interval'] = (ts.astype(int)-ts.astype(int)%(interval_width*60e9)).astype('datetime64[ns]')
    outFrames = {}
    outFrames['low'] = frame.groupby('interval').min()
    outFrames['high'] = frame.groupby('interval').max()
    outFrames['mean'] = frame.groupby('interval').mean()
    del frame['interval']
    for key in outFrames:
        #append the appropriate suffix to each column 
        columns = outFrames[key].columns 
        outFrames[key].columns = ['_'.join([col,key]) for col in columns]
    outFrames = pd.concat(outFrames.values(),axis=1)
    return outFrames 

kgao's avatar
kgao committed
def getData(inputFiles):
kgao's avatar
kgao committed
    dictData = {}

    for filename in inputFiles:
kgao's avatar
kgao committed
        getFrames = list(parser.read_frames(filename))

        for frame in getFrames:
kgao's avatar
kgao committed
            if 'stamp' not in frame:
                continue

            stamp = frame['stamp']
            del frame['stamp']

            dictData[stamp] = frame

    return pd.DataFrame(dictData).transpose().replace(-99999, np.nan)
kgao's avatar
kgao committed

def writeVars(ncFile, frame, database=parser.database):
kgao's avatar
kgao committed
    stamps = list(frame.index)
    baseDTObj = dt.strptime(str(stamps[0]).split(' ')[0], '%Y-%m-%d')

    #find out how much time elapsed
    #since the origin to the start of the day
    #in seconds
    baseTimeValue = baseDTObj - dt(1970,1,1)
    baseTimeValue = baseTimeValue.total_seconds()

    #create time numpy
    timeNumpy = np.empty(len(stamps), dtype='float64')
kgao's avatar
kgao committed

    counter = 0

    #write stamps in, yo

    for stamp in stamps:
        stampObj = dt.strptime(str(stamp), '%Y-%m-%d %H:%M:%S')
        timeValue = (stampObj - baseDTObj).total_seconds()

        timeNumpy[counter] = timeValue
        counter += 1

    fileVar = ncFile.variables
    fileVar['base_time'].assignValue(baseTimeValue)
    fileVar['time_offset'][:] = timeNumpy
    fileVar['time'][:] = timeNumpy 
kgao's avatar
kgao committed

    #write coordinate var values to file
    #alt might not be right, need to verify
    fileVar['lon'].assignValue(station.LONGITUDE)
    fileVar['lat'].assignValue(station.LATITUDE)
    fileVar['alt'].assignValue(328)

    #might change
    stationName = ("AOSS Tower")
    
    #transfer station name into array of chars
    statChars = list(stationName)
    statNumpy = np.asarray(statChars)

    #write station name to file
kgao's avatar
kgao committed
    fileVar['station_name'][0:len(statNumpy)] = statNumpy
kgao's avatar
kgao committed

    #writes data into file
    for varName in frame:
        if varName not in fileVar:
            logging.warn('Extraneous key: %s in frame'%varName)
            continue
kgao's avatar
kgao committed
        dataList = frame[varName].tolist()
kgao's avatar
kgao committed

kgao's avatar
kgao committed
        dataArray = np.asarray(dataList)
        fileVar[varName][:] = dataArray
kgao's avatar
kgao committed

        valid_min = database[varName][5]
        valid_max = database[varName][6]
kgao's avatar
kgao committed

kgao's avatar
kgao committed
        fileVar['qc_' + varName][:] = filterArray(dataArray, valid_min, valid_max)
kgao's avatar
kgao committed

    coordinates = ['lon', 'lat', 'alt', 'base_time', 'time_offset', 'station_name', 'time']

    for varName in fileVar:
        if varName.startswith('qc_'):
            continue

        elif varName in frame:
            continue

        elif varName in coordinates:
            continue

        else:
            fileVar['qc_' + varName][:] = np.full(len(list(frame.index)), np.byte(0b1), dtype='b')
kgao's avatar
kgao committed
    
kgao's avatar
kgao committed
    return ncFile

#The purpose of this method is to take a begin date, and end date
# input filenames and output filename and create a netCDF file 
# based upon that
# @param start time - a start datetime object
# @param end time - an end datetime object
# @param input filenames - list of filenames
# @param output filename - filename of the netcdf file

def createGiantNetCDF(start, end, inputFiles, outputName, zlib, chunkSize,
                      interval_width = None,  database=parser.database):
    default = False

    if(chunkSize):
        chunksizes = [chunkSize]

    else:
        default = True
kgao's avatar
kgao committed
    frame = getData(inputFiles)
kgao's avatar
kgao committed

kgao's avatar
kgao committed
    if(frame.empty):
        return False
kgao's avatar
kgao committed
    else:

        frame = minuteAverages(frame)
        if interval_width:
            frame = averageOverInterval(frame,interval_width) 

kgao's avatar
kgao committed
        if(start and end):
            frame = frame[start.strftime('%Y-%m-%d %H:%M:%S'): end.strftime('%Y-%m-%d %H:%M:%S')]

        if(default):
            chunksizes = [len(list(frame.index))]

kgao's avatar
kgao committed
        firstStamp = dt.strptime(str(list(frame.index)[0]), '%Y-%m-%d %H:%M:%S')

        ncFile = Dataset(outputName, 'w', format='NETCDF4_CLASSIC')
kgao's avatar
kgao committed

kgao's avatar
kgao committed
        ncFile = writeDimensions(ncFile)
kgao's avatar
kgao committed

        ncFile = createVariables(ncFile, firstStamp, chunksizes, zlib,database)
 
        ncFile.inputFiles = ', '.join(inputFiles)
kgao's avatar
kgao committed

        ncFile = writeVars(ncFile, frame,database)
kgao's avatar
kgao committed

kgao's avatar
kgao committed
        ncFile.close()
kgao's avatar
kgao committed
        
        return True
kgao's avatar
kgao committed
def createMultiple(filenames, outputFilenames, zlib, chunkSize):
    if(outputFilenames and len(filenames) != len(outputFilenames)):
        print('USAGE: number of output filenames must equal number of input filenames when start and end times are not specified')
        exit(0)
    
kgao's avatar
kgao committed
    results = []

    for idx, filename in enumerate(filenames):
kgao's avatar
kgao committed
        results.append(createGiantNetCDF(None, None, [filename], outputFilenames[idx], zlib, chunkSize))

    allFalse = True

    for result in results:
        if result == True:
            allFalse = False

    if allFalse == True:
        raise IOError('All ASCII files were empty')
kgao's avatar
kgao committed
#The purpose of this method is to take a string in the format
# YYYY-mm-ddTHH:MM:SS and convert that to a datetime object
# used in coordination with argparse -s and -e params
# @param datetime string
# @return datetime object

def _dt_convert(datetime_str):
    #parse datetime string, return datetime object
kgao's avatar
kgao committed
    try: 
        return dt.strptime(datetime_str, '%Y-%m-%dT%H:%M:%S')
    except:
        return dt.strptime(datetime_str, '%Y-%m-%d')
kgao's avatar
kgao committed
def main():
    import argparse

    #argparse description
Matthew Westphall's avatar
Matthew Westphall committed
    argparser = argparse.ArgumentParser(description="Convert level_00 aoss tower data to level_a0",
                                        fromfile_prefix_chars='@')
kgao's avatar
kgao committed

    #argparse verbosity info
    argparser.add_argument('-v', '--verbose', action="count", default=int(os.environ.get("VERBOSITY", 2)),
kgao's avatar
kgao committed
                         dest='verbosity',
                         help='each occurrence increases verbosity 1 level through ERROR-WARNING-INFO-DEBUG (default INFO)')

    #argparse start and end times
    argparser.add_argument('-s', '--start-time', type=_dt_convert, 
kgao's avatar
kgao committed
        help="Start time of massive netcdf file, if only -s is given, a netcdf file for only that day is given" + 
        ". Formats allowed: \'YYYY-MM-DDTHH:MM:SS\', \'YYYY-MM-DD\'")
    argparser.add_argument('-e', '--end-time', type=_dt_convert, help='End time of massive netcdf file. Formats allowed:' +
kgao's avatar
kgao committed
        "\'YYYY-MM-DDTHH:MM:SS\', \'YYYY-MM-DD\'")
    argparser.add_argument('-i', '--interval', type=float, 
            help='Width of the interval to average input data over in minutes.'+
        " If not specified, 1 is assumed. (Use 60 for one hour and 1440 for 1 day)")
    argparser.add_argument('-cs', '--chunk-size', type=int, help='chunk Size for the netCDF file')
    argparser.add_argument('-z', '--zlib', action='store_true', help='compress netCDF file with zlib')
kgao's avatar
kgao committed

    argparser.add_argument("input_files", nargs="+",
Matthew Westphall's avatar
Matthew Westphall committed
                         help="aoss_tower level_00 paths. Use @filename to red a list of paths from that file.")
kgao's avatar
kgao committed

    argparser.add_argument('-o', '--output', required=True, nargs="+", help="filename pattern or filename. " +
kgao's avatar
kgao committed
    "Should be along the lines of <filepath>/aoss_tower.YYYY-MM-DD.nc")
kgao's avatar
kgao committed

    levels = [logging.ERROR, logging.WARN, logging.INFO, logging.DEBUG]
    level=levels[min(3, args.verbosity)]
    logging.basicConfig(level=level)

kgao's avatar
kgao committed

    database = mean_database if args.interval else parser.database
kgao's avatar
kgao committed
    if(args.start_time and args.end_time):
        result = createGiantNetCDF(args.start_time, args.end_time, args.input_files, args.output[0], args.zlib, args.chunk_size,
                                   args.interval, database)
kgao's avatar
kgao committed
        if(result == False):
            raise IOError('An empty ASCII file was found')
kgao's avatar
kgao committed

kgao's avatar
kgao committed
    elif(args.start_time):
        end_time = args.start_time.replace(hour=23, minute=59, second=59)
        result = createGiantNetCDF(args.start_time, end_time, args.input_files, args.output[0], args.zlib, args.chunk_size,
                                   args.interval, database)
kgao's avatar
kgao committed
        if(result == False):
            raise IOError('An empty ASCII file was found')

    elif(args.end_time):
        print('USAGE: start time must be specified when end time is specified')
kgao's avatar
kgao committed

    else:
kgao's avatar
kgao committed
        createMultiple(args.input_files, args.output, args.zlib, args.chunk_size)
kgao's avatar
kgao committed
if __name__ == "__main__":
    main()