from textwrap import wrap import re import os import itertools import numpy as np from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt def confusion_matrix_values(correct_labels, predict_labels): cm = confusion_matrix(correct_labels, predict_labels) return cm def plot_confusion_matrix(cm, labels, title='Confusion matrix', filename = 'confusion_matrix', normalize=False, axis=1): ''' Parameters: correct_labels : These are your true classification categories. predict_labels : These are you predicted classification categories labels : This is a list of labels which will be used to display the axis labels title='Confusion matrix' : Title for your matrix filename = 'confusion_matrix' : Name for the output summay tensor Returns: summary: TensorFlow summary Other itema to note: - Depending on the number of category and the data , you may have to modify the figzie, font sizes etc. - Currently, some of the ticks dont line up due to rotations. ''' if normalize: if axis == 1: cm = cm.astype('float') / cm.sum(axis=axis)[:, np.newaxis] elif axis == 0: cm = cm.astype('float') / cm.sum(axis=axis)[np.newaxis, :] cm *= 100 cm = np.nan_to_num(cm, copy=True) cm = cm.astype('int') np.set_printoptions(precision=2) fig = plt.figure(figsize=(3, 3), dpi=320, facecolor='w', edgecolor='k') ax = fig.add_subplot(1, 1, 1) # im = ax.imshow(cm, cmap='Oranges') im = ax.imshow(cm, cmap='Blues') classes = [re.sub(r'([a-z](?=[A-Z])|[A-Z](?=[A-Z][a-z]))', r'\1 ', x) for x in labels] classes = ['\n'.join(wrap(l, 40)) for l in classes] tick_marks = np.arange(len(classes)) ax.set_xlabel('Predicted', fontsize=7) ax.set_xticks(tick_marks) c = ax.set_xticklabels(classes, fontsize=4, rotation=-90, ha='center') ax.xaxis.set_label_position('bottom') ax.xaxis.tick_bottom() ax.set_ylabel('True Label', fontsize=7) ax.set_yticks(tick_marks) ax.set_yticklabels(classes, fontsize=4, va ='center') ax.yaxis.set_label_position('left') ax.yaxis.tick_left() for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): ax.text(j, i, format(cm[i, j], 'd') if cm[i,j] != 0 else '.', horizontalalignment="center", fontsize=6, verticalalignment='center', color= "black") fig.set_tight_layout(True) plt.title(title, loc='left', fontweight='bold', fontsize=6) ImageDirAndName = os.path.join('/Users/tomrink', filename) fig.savefig(ImageDirAndName)