import glob import tensorflow as tf import util.util from util.setup import logdir, modeldir, cachepath, now, ancillary_path from util.util import EarlyStop, normalize, denormalize, resample, resample_2d_linear, resample_one,\ resample_2d_linear_one, get_grid_values_all, add_noise, smooth_2d, smooth_2d_single, median_filter_2d,\ median_filter_2d_single, downscale_2x import os, datetime import numpy as np import pickle import h5py from scipy.ndimage import gaussian_filter # L1B M/I-bands: /apollo/cloud/scratch/cwhite/VIIRS_HRES/2019/2019_01_01/ # CLAVRx: /apollo/cloud/scratch/Satellite_Output/VIIRS_HRES/2019/2019_01_01/ # /apollo/cloud/scratch/Satellite_Output/andi/NEW/VIIRS_HRES/2019 LOG_DEVICE_PLACEMENT = False PROC_BATCH_SIZE = 4 PROC_BATCH_BUFFER_SIZE = 50000 NumClasses = 5 if NumClasses == 2: NumLogits = 1 else: NumLogits = NumClasses BATCH_SIZE = 128 NUM_EPOCHS = 80 TRACK_MOVING_AVERAGE = False EARLY_STOP = True NOISE_TRAINING = False NOISE_STDDEV = 0.01 DO_AUGMENT = True SIGMA = 1.0 DO_ZERO_OUT = False DO_ESPCN = False # Note: If True, cannot do mixed resolution input fields (Adjust accordingly below) # setup scaling parameters dictionary mean_std_dct = {} mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl' f = open(mean_std_file, 'rb') mean_std_dct_l2 = pickle.load(f) f.close() mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl' f = open(mean_std_file, 'rb') mean_std_dct_l1b = pickle.load(f) f.close() mean_std_dct.update(mean_std_dct_l1b) mean_std_dct.update(mean_std_dct_l2) IMG_DEPTH = 1 # label_param = 'cloud_fraction' # label_param = 'cld_opd_dcomp' label_param = 'cloud_probability' params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] data_params_half = ['temp_11_0um_nom'] data_params_full = ['refl_0_65um_nom'] label_idx_i = params_i.index(label_param) label_idx = params.index(label_param) print('data_params_half: ', data_params_half) print('data_params_full: ', data_params_full) print('label_param: ', label_param) KERNEL_SIZE = 3 # target size: (128, 128) N = 1 if KERNEL_SIZE == 3: # slc_x = slice(2, N*128 + 4) # slc_y = slice(2, N*128 + 4) slc_x_2 = slice(1, N*128 + 6, 2) slc_y_2 = slice(1, N*128 + 6, 2) x_2 = np.arange(int((N*128)/2) + 3) y_2 = np.arange(int((N*128)/2) + 3) t = np.arange(0, int((N*128)/2) + 3, 0.5) s = np.arange(0, int((N*128)/2) + 3, 0.5) x_k = slice(1, N*128 + 3) y_k = slice(1, N*128 + 3) slc_x = slice(1, N*128 + 3) slc_y = slice(1, N*128 + 3) x_128 = slice(2, N*128 + 2) y_128 = slice(2, N*128 + 2) elif KERNEL_SIZE == 5: slc_x = slice(3, 135) slc_y = slice(3, 135) slc_x_2 = slice(2, 137, 2) slc_y_2 = slice(2, 137, 2) x_128 = slice(5, 133) y_128 = slice(5, 133) t = np.arange(1, 67, 0.5) s = np.arange(1, 67, 0.5) x_2 = np.arange(68) y_2 = np.arange(68) # ---------------------------------------- # Exp for ESPCN version if DO_ESPCN: slc_x_2 = slice(0, 132, 2) slc_y_2 = slice(0, 132, 2) x_128 = slice(2, 130) y_128 = slice(2, 130) def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', kernel_initializer='he_uniform', scale=None, kernel_size=3, do_drop_out=True, drop_rate=0.5, do_batch_norm=True): with tf.name_scope(block_name): skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip) if scale is not None: skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip) if do_drop_out: skip = tf.keras.layers.Dropout(drop_rate)(skip) if do_batch_norm: skip = tf.keras.layers.BatchNormalization()(skip) conv = conv + skip print(block_name+':', conv.shape) return conv def build_residual_block_conv2d_down2x(x_in, num_filters, activation, padding='SAME', drop_rate=0.5, do_drop_out=True, do_batch_norm=True): skip = x_in conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(x_in) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) if do_drop_out: conv = tf.keras.layers.Dropout(drop_rate)(conv) if do_batch_norm: conv = tf.keras.layers.BatchNormalization()(conv) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) if do_drop_out: conv = tf.keras.layers.Dropout(drop_rate)(conv) if do_batch_norm: conv = tf.keras.layers.BatchNormalization()(conv) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) if do_drop_out: conv = tf.keras.layers.Dropout(drop_rate)(conv) if do_batch_norm: conv = tf.keras.layers.BatchNormalization()(conv) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) if do_drop_out: skip = tf.keras.layers.Dropout(drop_rate)(skip) if do_batch_norm: skip = tf.keras.layers.BatchNormalization()(skip) conv = conv + skip conv = tf.keras.layers.LeakyReLU()(conv) print(conv.shape) return conv def upsample(tmp): tmp = tmp[:, 0:67, 0:67] tmp = resample_2d_linear(x_2, y_2, tmp, t, s) tmp = tmp[:, y_k, x_k] return tmp def upsample_nearest(grd): bsize, ylen, xlen = grd.shape up = np.zeros((bsize, ylen*2, xlen*2)) up[:, 0::2, 0::2] = grd[:, 0::, 0::] up[:, 1::2, 0::2] = grd[:, 0::, 0::] up[:, 0::2, 1::2] = grd[:, 0::, 0::] up[:, 1::2, 1::2] = grd[:, 0::, 0::] up = up[:, y_k, x_k] return up def upsample_mean(grd): bsize, ylen, xlen = grd.shape grd = get_grid_cell_mean(grd) up = np.zeros((bsize, ylen, xlen)) up[:, ::2, ::2] = grd[:, :, :] up[:, 1::2, ::2] = grd[:, :, :] up[:, ::2, 1::2] = grd[:, :, :] up[:, 1::2, 1::2] = grd[:, :, :] return up def get_grid_cell_mean(grd_k): grd_k = np.where(np.isnan(grd_k), 0, grd_k) a = grd_k[:, 0::2, 0::2] b = grd_k[:, 1::2, 0::2] c = grd_k[:, 0::2, 1::2] d = grd_k[:, 1::2, 1::2] s = a + b + c + d s /= 4.0 return s def get_min_max_std(grd_k): a = grd_k[:, 0::2, 0::2] b = grd_k[:, 1::2, 0::2] c = grd_k[:, 0::2, 1::2] d = grd_k[:, 1::2, 1::2] lo = np.nanmin([a[:, ], b[:, ], c[:, ], d[:, ]]) hi = np.nanmax([a[:, ], b[:, ], c[:, ], d[:, ]]) std = np.nanstd([a[:, ], b[:, ], c[:, ], d[:, ]]) lo = np.where(np.isnan(lo), lo) hi = np.where(np.isnan(hi), hi) std = np.where(np.isnan(std), std) return lo, hi, std def get_label_data(grd_k): grd_k = np.where(np.isnan(grd_k), 0, grd_k) grd_k = np.where(grd_k < 0.50, 0, 1) a = grd_k[:, 0::2, 0::2] b = grd_k[:, 1::2, 0::2] c = grd_k[:, 0::2, 1::2] d = grd_k[:, 1::2, 1::2] s = a + b + c + d cat_0 = (s == 0) cat_1 = np.logical_and(s > 0, s < 4) cat_2 = (s == 4) s[cat_0] = 0 s[cat_1] = 1 s[cat_2] = 2 return s def get_label_data_5cat(grd_k): grd_k = np.where(np.isnan(grd_k), 0, grd_k) grd_k = np.where(grd_k < 0.5, 0, 1) a = grd_k[:, 0::2, 0::2] b = grd_k[:, 1::2, 0::2] c = grd_k[:, 0::2, 1::2] d = grd_k[:, 1::2, 1::2] s = a + b + c + d cat_0 = (s == 0) cat_1 = (s == 1) cat_2 = (s == 2) cat_3 = (s == 3) cat_4 = (s == 4) s[cat_0] = 0 s[cat_1] = 1 s[cat_2] = 2 s[cat_3] = 3 s[cat_4] = 4 return s class SRCNN: def __init__(self): self.train_data = None self.train_label = None self.test_data = None self.test_label = None self.test_data_denorm = None self.train_dataset = None self.inner_train_dataset = None self.test_dataset = None self.eval_dataset = None self.X_img = None self.X_prof = None self.X_u = None self.X_v = None self.X_sfc = None self.inputs = [] self.y = None self.handle = None self.inner_handle = None self.in_mem_batch = None self.h5f_l1b_trn = None self.h5f_l1b_tst = None self.h5f_l2_trn = None self.h5f_l2_tst = None self.logits = None self.predict_data = None self.predict_dataset = None self.mean_list = None self.std_list = None self.training_op = None self.correct = None self.accuracy = None self.loss = None self.pred_class = None self.variable_averages = None self.global_step = None self.writer_train = None self.writer_valid = None self.writer_train_valid_loss = None self.OUT_OF_RANGE = False self.abi = None self.temp = None self.wv = None self.lbfp = None self.sfc = None self.in_mem_data_cache = {} self.in_mem_data_cache_test = {} self.model = None self.optimizer = None self.ema = None self.train_loss = None self.train_accuracy = None self.test_loss = None self.test_accuracy = None self.test_auc = None self.test_recall = None self.test_precision = None self.test_confusion_matrix = None self.test_true_pos = None self.test_true_neg = None self.test_false_pos = None self.test_false_neg = None self.test_labels = [] self.test_preds = [] self.test_probs = None self.learningRateSchedule = None self.num_data_samples = None self.initial_learning_rate = None self.data_dct = None self.train_data_files = None self.train_label_files = None self.test_data_files = None self.test_label_files = None self.train_data_nda = None self.train_label_nda = None self.test_data_nda = None self.test_label_nda = None self.n_chans = len(data_params_half) + len(data_params_full) + 1 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) self.inputs.append(self.X_img) tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) def get_in_mem_data_batch(self, idxs, is_training): if is_training: data_files = self.train_data_files label_files = self.train_label_files else: data_files = self.test_data_files label_files = self.test_label_files data_s = [] label_s = [] for k in idxs: f = data_files[k] nda = np.load(f) data_s.append(nda) f = label_files[k] nda = np.load(f) label_s.append(nda) input_data = np.concatenate(data_s) input_label = np.concatenate(label_s) data_norm = [] for param in data_params_half: idx = params.index(param) tmp = input_data[:, idx, :, :] tmp = tmp.copy() tmp = np.where(np.isnan(tmp), 0, tmp) if DO_ESPCN: tmp = tmp[:, slc_y_2, slc_x_2] else: # Half res upsampled to full res: tmp = upsample(tmp) tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) for param in data_params_full: idx = params_i.index(param) tmp = input_label[:, idx, :, :] tmp = tmp.copy() tmp = np.where(np.isnan(tmp), 0, tmp) tmp = tmp[:, slc_y, slc_x] tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) # --------------------------------------------------- tmp = input_data[:, label_idx, :, :] tmp = tmp.copy() tmp = np.where(np.isnan(tmp), 0, tmp) if DO_ESPCN: tmp = tmp[:, slc_y_2, slc_x_2] else: # Half res upsampled to full res: tmp = upsample_nearest(tmp) if label_param != 'cloud_probability': tmp = normalize(tmp, label_param, mean_std_dct) data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3) data = data.astype(np.float32) # ----------------------------------------------------- # ----------------------------------------------------- label = input_label[:, label_idx_i, :, :] label = label.copy() label = label[:, y_128, x_128] if NumClasses == 5: label = get_label_data_5cat(label) else: label = get_label_data(label) if label_param != 'cloud_probability': label = normalize(label, label_param, mean_std_dct) else: label = np.where(np.isnan(label), 0, label) label = np.expand_dims(label, axis=3) data = data.astype(np.float32) label = label.astype(np.float32) if is_training and DO_AUGMENT: data_ud = np.flip(data, axis=1) label_ud = np.flip(label, axis=1) data_lr = np.flip(data, axis=2) label_lr = np.flip(label, axis=2) data = np.concatenate([data, data_ud, data_lr]) label = np.concatenate([label, label_ud, label_lr]) return data, label def get_in_mem_data_batch_train(self, idxs): return self.get_in_mem_data_batch(idxs, True) def get_in_mem_data_batch_test(self, idxs): return self.get_in_mem_data_batch(idxs, False) @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32]) return out @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function_test(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32]) return out def get_train_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) dataset = dataset.cache() if DO_AUGMENT: dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset def get_test_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function_test, num_parallel_calls=8) dataset = dataset.cache() self.test_dataset = dataset def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples): self.train_data_files = train_data_files self.train_label_files = train_label_files self.test_data_files = test_data_files self.test_label_files = test_label_files trn_idxs = np.arange(len(train_data_files)) np.random.shuffle(trn_idxs) tst_idxs = np.arange(len(test_data_files)) self.get_train_dataset(trn_idxs) self.get_test_dataset(tst_idxs) self.num_data_samples = num_train_samples # approximately print('datetime: ', now) print('training and test data: ') print('---------------------------') print('num train samples: ', self.num_data_samples) print('BATCH SIZE: ', BATCH_SIZE) print('num test samples: ', tst_idxs.shape[0]) print('setup_pipeline: Done') def setup_test_pipeline(self, test_data_files, test_label_files): self.test_data_files = test_data_files self.test_label_files = test_label_files tst_idxs = np.arange(len(test_data_files)) self.get_test_dataset(tst_idxs) print('setup_test_pipeline: Done') def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2): print('build_cnn') padding = "SAME" # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.relu momentum = 0.99 num_filters = 64 input_2d = self.inputs[0] print('input: ', input_2d.shape) conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d) print(conv.shape) # if NOISE_TRAINING: # conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv) scale = 0.2 conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_block_conv2d_down2x(conv_b, num_filters, activation) conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b) # conv = conv + conv_b conv = conv_b print(conv.shape) if NumClasses == 2: final_activation = tf.nn.sigmoid # For binary else: final_activation = tf.nn.softmax # For multi-class if not DO_ESPCN: # This is effectively a Dense layer self.logits = tf.keras.layers.Conv2D(NumLogits, kernel_size=1, strides=1, padding=padding, activation=final_activation)(conv) else: conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding=padding, activation=activation)(conv) print(conv.shape) conv = tf.nn.depth_to_space(conv, factor) print(conv.shape) self.logits = tf.keras.layers.Conv2D(IMG_DEPTH, kernel_size=3, strides=1, padding=padding, activation=final_activation)(conv) print(self.logits.shape) def build_training(self): if NumClasses == 2: self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only else: self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class # self.loss = tf.keras.losses.MeanAbsoluteError() # Regression # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) initial_learning_rate = 0.002 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch decay_steps = int(steps_per_epoch) * 4 print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) if TRACK_MOVING_AVERAGE: # Not really sure this works properly (from tfa) # optimizer = tfa.optimizers.MovingAverage(optimizer) self.ema = tf.train.ExponentialMovingAverage(decay=0.9999) self.optimizer = optimizer self.initial_learning_rate = initial_learning_rate def build_evaluation(self): self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss') if NumClasses == 2: self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy') self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy') self.test_auc = tf.keras.metrics.AUC(name='test_auc') self.test_recall = tf.keras.metrics.Recall(name='test_recall') self.test_precision = tf.keras.metrics.Precision(name='test_precision') self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg') self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos') self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg') self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos') else: self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) def train_step(self, inputs, labels): labels = tf.squeeze(labels, axis=[3]) with tf.GradientTape() as tape: pred = self.model([inputs], training=True) loss = self.loss(labels, pred) total_loss = loss if len(self.model.losses) > 0: reg_loss = tf.math.add_n(self.model.losses) total_loss = loss + reg_loss gradients = tape.gradient(total_loss, self.model.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) if TRACK_MOVING_AVERAGE: self.ema.apply(self.model.trainable_variables) self.train_loss(loss) self.train_accuracy(labels, pred) return loss @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) def test_step(self, inputs, labels): labels = tf.squeeze(labels, axis=[3]) pred = self.model([inputs], training=False) t_loss = self.loss(labels, pred) self.test_loss(t_loss) self.test_accuracy(labels, pred) # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) # decorator commented out because pred.numpy(): pred not evaluated yet. def predict(self, inputs, labels): pred = self.model([inputs], training=False) # t_loss = self.loss(tf.squeeze(labels), pred) t_loss = self.loss(labels, pred) self.test_labels.append(labels) self.test_preds.append(pred.numpy()) self.test_loss(t_loss) self.test_accuracy(labels, pred) def reset_test_metrics(self): self.test_loss.reset_states() self.test_accuracy.reset_states() def get_metrics(self): recall = self.test_recall.result() precsn = self.test_precision.result() f1 = 2 * (precsn * recall) / (precsn + recall) tn = self.test_true_neg.result() tp = self.test_true_pos.result() fn = self.test_false_neg.result() fp = self.test_false_pos.result() mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) return f1, mcc def do_training(self, ckpt_dir=None): if ckpt_dir is None: if not os.path.exists(modeldir): os.mkdir(modeldir) ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) else: ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss')) step = 0 total_time = 0 best_test_loss = np.finfo(dtype=np.float).max if EARLY_STOP: es = EarlyStop() for epoch in range(NUM_EPOCHS): self.train_loss.reset_states() self.train_accuracy.reset_states() t0 = datetime.datetime.now().timestamp() proc_batch_cnt = 0 n_samples = 0 for data, label in self.train_dataset: trn_ds = tf.data.Dataset.from_tensor_slices((data, label)) trn_ds = trn_ds.batch(BATCH_SIZE) for mini_batch in trn_ds: if self.learningRateSchedule is not None: loss = self.train_step(mini_batch[0], mini_batch[1]) if (step % 100) == 0: with self.writer_train.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step) tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_epochs', epoch, step=step) self.reset_test_metrics() for data_tst, label_tst in self.test_dataset: tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst)) tst_ds = tst_ds.batch(BATCH_SIZE) for mini_batch_test in tst_ds: self.test_step(mini_batch_test[0], mini_batch_test[1]) with self.writer_valid.as_default(): tf.summary.scalar('loss_val', self.test_loss.result(), step=step) tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) with self.writer_train_valid_loss.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('loss_val', self.test_loss.result(), step=step) print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.optimizer._decayed_lr('float32').numpy()) step += 1 print('train loss: ', loss.numpy()) proc_batch_cnt += 1 n_samples += data.shape[0] print('proc_batch_cnt: ', proc_batch_cnt, n_samples) t1 = datetime.datetime.now().timestamp() print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) total_time += (t1-t0) self.reset_test_metrics() for data, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data, label)) ds = ds.batch(BATCH_SIZE) for mini_batch in ds: self.test_step(mini_batch[0], mini_batch[1]) print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) print('------------------------------------------------------') tst_loss = self.test_loss.result().numpy() if tst_loss < best_test_loss: best_test_loss = tst_loss ckpt_manager.save() if EARLY_STOP and es.check_stop(tst_loss): break print('total time: ', total_time) self.writer_train.close() self.writer_valid.close() self.writer_train_valid_loss.close() def build_model(self): self.build_srcnn() self.model = tf.keras.Model(self.inputs, self.logits) def restore(self, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.reset_test_metrics() for data, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data, label)) ds = ds.batch(BATCH_SIZE) for mini_batch_test in ds: self.predict(mini_batch_test) print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) labels = np.concatenate(self.test_labels) preds = np.concatenate(self.test_preds) print(labels.shape, preds.shape) # if label_param != 'cloud_probability': # labels_denorm = denormalize(labels, label_param, mean_std_dct) # preds_denorm = denormalize(preds, label_param, mean_std_dct) return labels, preds def do_evaluate(self, data, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.reset_test_metrics() pred = self.model([data], training=False) self.test_probs = pred pred = pred.numpy() if label_param != 'cloud_probability': pred = denormalize(pred, label_param, mean_std_dct) return pred def run(self, directory, ckpt_dir=None, num_data_samples=50000): train_data_files = glob.glob(directory+'train*mres*.npy') valid_data_files = glob.glob(directory+'valid*mres*.npy') train_label_files = glob.glob(directory+'train*ires*.npy') valid_label_files = glob.glob(directory+'valid*ires*.npy') self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples) self.build_model() self.build_training() self.build_evaluation() self.do_training(ckpt_dir=ckpt_dir) def run_restore(self, directory, ckpt_dir): self.num_data_samples = 1000 valid_data_files = glob.glob(directory + 'valid*mres*.npy') valid_label_files = glob.glob(directory + 'valid*ires*.npy') self.setup_test_pipeline(valid_data_files, valid_label_files) self.build_model() self.build_training() self.build_evaluation() return self.restore(ckpt_dir) def run_evaluate(self, data, ckpt_dir): data = tf.convert_to_tensor(data, dtype=tf.float32) self.num_data_samples = 80000 self.build_model() self.build_training() self.build_evaluation() return self.do_evaluate(data, ckpt_dir) def run_restore_static(directory, ckpt_dir, out_file=None): nn = SRCNN() labels, preds = nn.run_restore(directory, ckpt_dir) if out_file is not None: np.save(out_file, [np.squeeze(labels), preds.argmax(axis=3), preds[:, :, :, 0], preds[:, :, :, 1], preds[:, :, :, 2]]) def run_evaluate_static(in_file, out_file, ckpt_dir): N = 10 slc_x = slice(2, N*128 + 4) slc_y = slice(2, N*128 + 4) slc_x_2 = slice(1, N*128 + 6, 2) slc_y_2 = slice(1, N*128 + 6, 2) x_2 = np.arange(int((N*128)/2) + 3) y_2 = np.arange(int((N*128)/2) + 3) t = np.arange(0, int((N*128)/2) + 3, 0.5) s = np.arange(0, int((N*128)/2) + 3, 0.5) x_k = slice(1, N*128 + 3) y_k = slice(1, N*128 + 3) x_128 = slice(3, N*128 + 3) y_128 = slice(3, N*128 + 3) sub_y, sub_x = (N * 128) + 10, (N * 128) + 10 y_0, x_0, = 3232 - int(sub_y/2), 3200 - int(sub_x/2) h5f = h5py.File(in_file, 'r') grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] grd_a = grd_a.copy() grd_a = np.where(np.isnan(grd_a), 0, grd_a) hr_grd_a = grd_a.copy() hr_grd_a = hr_grd_a[y_128, x_128] # Full res: # grd_a = grd_a[slc_y, slc_x] # Half res: grd_a = grd_a[slc_y_2, slc_x_2] grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s) grd_a = grd_a[y_k, x_k] grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) # ------------------------------------------------------ grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] grd_b = grd_b.copy() grd_b = np.where(np.isnan(grd_b), 0, grd_b) hr_grd_b = grd_b.copy() hr_grd_b = hr_grd_b[y_128, x_128] grd_b = grd_b[slc_y, slc_x] grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) grd_c = get_grid_values_all(h5f, label_param) grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x] hr_grd_c = grd_c.copy() hr_grd_c = np.where(np.isnan(hr_grd_c), 0, grd_c) hr_grd_c = hr_grd_c[y_128, x_128] # hr_grd_c = smooth_2d_single(hr_grd_c, sigma=1.0) grd_c = np.where(np.isnan(grd_c), 0, grd_c) grd_c = grd_c.copy() # grd_c = smooth_2d_single(grd_c, sigma=1.0) grd_c = grd_c[slc_y_2, slc_x_2] grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s) grd_c = grd_c[y_k, x_k] if label_param != 'cloud_probability': grd_c = normalize(grd_c, label_param, mean_std_dct) data = np.stack([grd_a, grd_b, grd_c], axis=2) data = np.expand_dims(data, axis=0) h5f.close() nn = SRCNN() out_sr = nn.run_evaluate(data, ckpt_dir) if out_file is not None: np.save(out_file, (out_sr[0, :, :, 0], hr_grd_a, hr_grd_b, hr_grd_c)) else: return out_sr, hr_grd_a, hr_grd_b, hr_grd_c def analyze(file='/Users/tomrink/cld_opd_out.npy'): # Save this: # nn.test_data_files = glob.glob('/Users/tomrink/data/clavrx_opd_valid_DAY/data_valid*.npy') # idxs = np.arange(50) # dat, lbl = nn.get_in_mem_data_batch(idxs, False) # tmp = dat[:, 1:128, 1:128, 1] # tmp = dat[:, 1:129, 1:129, 1] tup = np.load(file, allow_pickle=True) lbls = tup[0] pred = tup[1] lbls = lbls[:, :, :, 0] pred = pred[:, :, :, 0] print('Total num pixels: ', lbls.size) pred = pred.flatten() pred = np.where(pred < 0.0, 0.0, pred) lbls = lbls.flatten() diff = pred - lbls mae = (np.sum(np.abs(diff))) / diff.size print('MAE: ', mae) bin_edges = [] bin_ranges = [] bin_ranges.append([0.0, 5.0]) bin_edges.append(0.0) bin_ranges.append([5.0, 10.0]) bin_edges.append(5.0) bin_ranges.append([10.0, 15.0]) bin_edges.append(10.0) bin_ranges.append([15.0, 20.0]) bin_edges.append(15.0) bin_ranges.append([20.0, 30.0]) bin_edges.append(20.0) bin_ranges.append([30.0, 40.0]) bin_edges.append(30.0) bin_ranges.append([40.0, 60.0]) bin_edges.append(40.0) bin_ranges.append([60.0, 80.0]) bin_edges.append(60.0) bin_ranges.append([80.0, 100.0]) bin_edges.append(80.0) bin_ranges.append([100.0, 120.0]) bin_edges.append(100.0) bin_ranges.append([120.0, 140.0]) bin_edges.append(120.0) bin_ranges.append([140.0, 160.0]) bin_edges.append(140.0) bin_edges.append(160.0) diff_by_value_bins = util.util.bin_data_by(diff, lbls, bin_ranges) values = [] for k in range(len(bin_ranges)): diff_k = diff_by_value_bins[k] mae_k = (np.sum(np.abs(diff_k)) / diff_k.size) values.append(int(mae_k/bin_ranges[k][1] * 100.0)) print('MAE: ', diff_k.size, bin_ranges[k], mae_k) return np.array(values), bin_edges def analyze2(nda_m, nda_i): n_imgs = nda_m.shape[0] nda_m = np.where(nda_m < 0.5, 0, 1) nda_i = np.where(nda_i < 0.5, 0, 1) cf_m = np.zeros((n_imgs, 64, 64)) cf_i = np.zeros((n_imgs, 64, 64)) for k in range(n_imgs): for j in range(1, 65): for i in range(1, 65): sub_3x3 = nda_m[k, j-1:j+2, i-1:i+2] cf_m[k, j-1, i-1] = np.sum(sub_3x3) sub_4x4 = nda_i[k, j*2-1:j*2+3, i*2-1:i*2+3] cf_i[k, j-1, i-1] = np.sum(sub_4x4) for k in range(n_imgs): cat_0 = (cf_m[k, ] == 0) cat_1 = (cf_m[k, ] > 0) & (cf_m[k, ] < 9) cat_2 = cf_m[k, ] == 9 cf_m[k, cat_0] = 0 cf_m[k, cat_1] = 1 cf_m[k, cat_2] = 2 cat_0 = (cf_i[k, ] == 0) cat_1 = (cf_i[k, ] > 0) & (cf_i[k, ] < 16) cat_2 = cf_i[k, ] == 16 cf_i[k, cat_0] = 0 cf_i[k, cat_1] = 1 cf_i[k, cat_2] = 2 return cf_m, cf_i if __name__ == "__main__": nn = SRCNN() nn.run('matchup_filename')