import glob import tensorflow as tf from util.setup import logdir, modeldir, now, ancillary_path from util.util import EarlyStop, normalize, denormalize, get_grid_values_all, resample_2d_linear import os, datetime import numpy as np import pickle import h5py LOG_DEVICE_PLACEMENT = False PROC_BATCH_SIZE = 4 PROC_BATCH_BUFFER_SIZE = 5000 NumClasses = 2 if NumClasses == 2: NumLogits = 1 else: NumLogits = NumClasses BATCH_SIZE = 128 NUM_EPOCHS = 80 TRACK_MOVING_AVERAGE = False EARLY_STOP = True NOISE_TRAINING = False NOISE_STDDEV = 0.01 DO_AUGMENT = True DO_SMOOTH = False SIGMA = 1.0 DO_ZERO_OUT = False # setup scaling parameters dictionary mean_std_dct = {} mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl' f = open(mean_std_file, 'rb') mean_std_dct_l2 = pickle.load(f) f.close() mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl' f = open(mean_std_file, 'rb') mean_std_dct_l1b = pickle.load(f) f.close() mean_std_dct.update(mean_std_dct_l1b) mean_std_dct.update(mean_std_dct_l2) IMG_DEPTH = 1 label_param = 'cld_opd_dcomp' params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01', label_param] params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] data_params_full = ['refl_0_65um_nom'] sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] label_idx_i = params_i.index(label_param) label_idx = params.index(label_param) print('data_params_half: ', data_params_half) print('data_params_full: ', data_params_full) print('label_param: ', label_param) KERNEL_SIZE = 3 def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', kernel_initializer='he_uniform', scale=None, kernel_size=3, do_drop_out=True, drop_rate=0.5, do_batch_norm=True): with tf.name_scope(block_name): skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip) if scale is not None: skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip) if do_drop_out: skip = tf.keras.layers.Dropout(drop_rate)(skip) if do_batch_norm: skip = tf.keras.layers.BatchNormalization()(skip) conv = conv + skip print(block_name+':', conv.shape) return conv def upsample_nearest(grd): bsize, ylen, xlen = grd.shape up = np.zeros((bsize, ylen*2, xlen*2)) up[:, 0::2, 0::2] = grd[:, 0::, 0::] up[:, 1::2, 0::2] = grd[:, 0::, 0::] up[:, 0::2, 1::2] = grd[:, 0::, 0::] up[:, 1::2, 1::2] = grd[:, 0::, 0::] return up def upsample_mean(grd): bsize, ylen, xlen = grd.shape up = np.zeros((bsize, ylen*2, xlen*2)) up[:, ::2, ::2] = grd[:, ::2, ::2] up[:, 1::2, ::2] = grd[:, ::2, ::2] up[:, ::2, 1::2] = grd[:, ::2, ::2] up[:, 1::2, 1::2] = grd[:, ::2, ::2] return up def get_grid_cell_mean(grd_k): grd_k = np.where(np.isnan(grd_k), 0, grd_k) a = grd_k[:, 0::2, 0::2] b = grd_k[:, 1::2, 0::2] c = grd_k[:, 0::2, 1::2] d = grd_k[:, 1::2, 1::2] mean = np.nanmean([a, b, c, d], axis=0) return mean def get_min_max_std(grd_k): grd_k = np.where(np.isnan(grd_k), 0, grd_k) a = grd_k[:, 0::2, 0::2] b = grd_k[:, 1::2, 0::2] c = grd_k[:, 0::2, 1::2] d = grd_k[:, 1::2, 1::2] lo = np.nanmin([a, b, c, d], axis=0) hi = np.nanmax([a, b, c, d], axis=0) std = np.nanstd([a, b, c, d], axis=0) avg = np.nanmean([a, b, c, d], axis=0) return lo, hi, std, avg class SRCNN: def __init__(self, LEN_Y=32, LEN_X=32): self.train_data = None self.train_label = None self.test_data = None self.test_label = None self.test_data_denorm = None self.train_dataset = None self.inner_train_dataset = None self.test_dataset = None self.eval_dataset = None self.X_img = None self.inputs = [] self.logits = None self.predict_data = None self.predict_dataset = None self.mean_list = None self.std_list = None self.training_op = None self.correct = None self.accuracy = None self.loss = None self.pred_class = None self.variable_averages = None self.global_step = None self.writer_train = None self.writer_valid = None self.writer_train_valid_loss = None self.model = None self.optimizer = None self.ema = None self.train_loss = None self.train_accuracy = None self.test_loss = None self.test_accuracy = None self.test_labels = [] self.test_preds = [] self.test_probs = None self.learningRateSchedule = None self.num_data_samples = None self.initial_learning_rate = None self.train_data_files = None self.train_label_files = None self.test_data_files = None self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 self.n_chans = 3 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) self.inputs.append(self.X_img) self.slc_x_m = slice(1, int(LEN_X / 2) + 4) self.slc_y_m = slice(1, int(LEN_Y / 2) + 4) self.slc_x = slice(3, LEN_X + 5) self.slc_y = slice(3, LEN_Y + 5) self.slc_x_2 = slice(2, LEN_X + 7, 2) self.slc_y_2 = slice(2, LEN_Y + 7, 2) self.x_2 = np.arange(int(LEN_X / 2) + 3) self.y_2 = np.arange(int(LEN_Y / 2) + 3) self.t = np.arange(0, int(LEN_X / 2) + 3, 0.5) self.s = np.arange(0, int(LEN_Y / 2) + 3, 0.5) self.x_k = slice(1, LEN_X + 3) self.y_k = slice(1, LEN_Y + 3) self.x_128 = slice(4, LEN_X + 4) self.y_128 = slice(4, LEN_Y + 4) tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) def upsample(self, grd): grd = resample_2d_linear(self.x_2, self.y_2, grd, self.t, self.s) grd = grd[:, self.y_k, self.x_k] return grd def get_in_mem_data_batch(self, idxs, is_training): if is_training: data_files = self.train_data_files label_files = self.train_label_files else: data_files = self.test_data_files label_files = self.test_label_files data_s = [] label_s = [] for k in idxs: f = data_files[k] nda = np.load(f) data_s.append(nda) f = label_files[k] nda = np.load(f) label_s.append(nda) input_data = np.concatenate(data_s) input_label = np.concatenate(label_s) data_norm = [] for param in data_params_half: idx = params.index(param) tmp = input_data[:, idx, :, :] tmp = np.where(np.isnan(tmp), 0, tmp) tmp = tmp[:, self.slc_y_m, self.slc_x_m] tmp = self.upsample(tmp) tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) # for param in sub_fields: # idx = params.index(param) # tmp = input_data[:, idx, :, :] # tmp = tmp[:, self.slc_y_m, self.slc_x_m] # tmp = upsample_nearest(tmp) # if param != 'refl_substddev_ch01': # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) # else: # tmp = np.where(np.isnan(tmp), 0, tmp) # data_norm.append(tmp) # for param in data_params_full: # idx = params_i.index(param) # tmp = input_label[:, idx, :, :] # tmp = np.where(np.isnan(tmp), 0, tmp) # # tmp = normalize(tmp, param, mean_std_dct) # data_norm.append(tmp[:, self.slc_y, self.slc_x]) # --------------------------------------------------- tmp = input_label[:, label_idx_i, :, :] tmp = np.where(np.isnan(tmp), 0, tmp) tmp = tmp[:, self.slc_y_2, self.slc_x_2] tmp = self.upsample(tmp) tmp = normalize(tmp, label_param, mean_std_dct) data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3) data = data.astype(np.float32) # ----------------------------------------------------- # ----------------------------------------------------- label = input_label[:, label_idx_i, :, :] label = normalize(label, label_param, mean_std_dct) label = label[:, self.y_128, self.x_128] label = np.where(np.isnan(label), 0, label) label = np.expand_dims(label, axis=3) data = data.astype(np.float32) label = label.astype(np.float32) if is_training and DO_AUGMENT: data_ud = np.flip(data, axis=1) label_ud = np.flip(label, axis=1) data_lr = np.flip(data, axis=2) label_lr = np.flip(label, axis=2) data = np.concatenate([data, data_ud, data_lr]) label = np.concatenate([label, label_ud, label_lr]) return data, label def get_in_mem_data_batch_train(self, idxs): return self.get_in_mem_data_batch(idxs, True) def get_in_mem_data_batch_test(self, idxs): return self.get_in_mem_data_batch(idxs, False) @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32]) return out @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function_test(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32]) return out def get_train_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) dataset = dataset.cache() if DO_AUGMENT: dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset def get_test_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function_test, num_parallel_calls=8) dataset = dataset.cache() self.test_dataset = dataset def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples): self.train_data_files = train_data_files self.train_label_files = train_label_files self.test_data_files = test_data_files self.test_label_files = test_label_files trn_idxs = np.arange(len(train_data_files)) np.random.shuffle(trn_idxs) tst_idxs = np.arange(len(test_data_files)) self.get_train_dataset(trn_idxs) self.get_test_dataset(tst_idxs) self.num_data_samples = num_train_samples # approximately print('datetime: ', now) print('training and test data: ') print('---------------------------') print('num train samples: ', self.num_data_samples) print('BATCH SIZE: ', BATCH_SIZE) print('num test samples: ', tst_idxs.shape[0]) print('setup_pipeline: Done') def setup_test_pipeline(self, test_data_files, test_label_files): self.test_data_files = test_data_files self.test_label_files = test_label_files tst_idxs = np.arange(len(test_data_files)) self.get_test_dataset(tst_idxs) print('setup_test_pipeline: Done') def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2): print('build_cnn') padding = "SAME" # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.relu momentum = 0.99 num_filters = 64 input_2d = self.inputs[0] print('input: ', input_2d.shape) conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d) print(conv.shape) # if NOISE_TRAINING: # conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv) scale = 0.2 conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale) conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b) conv = conv + conv_b print(conv.shape) # This is effectively a Dense layer self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='regression')(conv) print(self.logits.shape) def build_training(self): self.loss = tf.keras.losses.MeanSquaredError() # Regression # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) initial_learning_rate = 0.002 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch decay_steps = int(steps_per_epoch) * 4 print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) if TRACK_MOVING_AVERAGE: # Not really sure this works properly (from tfa) # optimizer = tfa.optimizers.MovingAverage(optimizer) self.ema = tf.train.ExponentialMovingAverage(decay=0.9999) self.optimizer = optimizer self.initial_learning_rate = initial_learning_rate def build_evaluation(self): self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy') self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy') self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss') @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) def train_step(self, inputs, labels): with tf.GradientTape() as tape: pred = self.model([inputs], training=True) loss = self.loss(labels, pred) total_loss = loss if len(self.model.losses) > 0: reg_loss = tf.math.add_n(self.model.losses) total_loss = loss + reg_loss gradients = tape.gradient(total_loss, self.model.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) if TRACK_MOVING_AVERAGE: self.ema.apply(self.model.trainable_variables) self.train_loss(loss) self.train_accuracy(labels, pred) return loss @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) def test_step(self, inputs, labels): pred = self.model([inputs], training=False) t_loss = self.loss(labels, pred) self.test_loss(t_loss) self.test_accuracy(labels, pred) # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) # decorator commented out because pred.numpy(): pred not evaluated yet. def predict(self, inputs, labels): pred = self.model([inputs], training=False) # t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred) t_loss = self.loss(labels, pred) self.test_labels.append(labels) self.test_preds.append(pred.numpy()) self.test_loss(t_loss) self.test_accuracy(labels, pred) def reset_test_metrics(self): self.test_loss.reset_states() self.test_accuracy.reset_states() def do_training(self, ckpt_dir=None): if ckpt_dir is None: if not os.path.exists(modeldir): os.mkdir(modeldir) ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) else: ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss')) step = 0 total_time = 0 best_test_loss = np.finfo(dtype=np.float).max if EARLY_STOP: es = EarlyStop() for epoch in range(NUM_EPOCHS): self.train_loss.reset_states() self.train_accuracy.reset_states() t0 = datetime.datetime.now().timestamp() proc_batch_cnt = 0 n_samples = 0 for data, label in self.train_dataset: trn_ds = tf.data.Dataset.from_tensor_slices((data, label)) trn_ds = trn_ds.batch(BATCH_SIZE) for mini_batch in trn_ds: if self.learningRateSchedule is not None: loss = self.train_step(mini_batch[0], mini_batch[1]) if (step % 100) == 0: with self.writer_train.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step) tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_epochs', epoch, step=step) self.reset_test_metrics() for data_tst, label_tst in self.test_dataset: tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst)) tst_ds = tst_ds.batch(BATCH_SIZE) for mini_batch_test in tst_ds: self.test_step(mini_batch_test[0], mini_batch_test[1]) with self.writer_valid.as_default(): tf.summary.scalar('loss_val', self.test_loss.result(), step=step) tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) with self.writer_train_valid_loss.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('loss_val', self.test_loss.result(), step=step) print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.optimizer._decayed_lr('float32').numpy()) step += 1 print('train loss: ', loss.numpy()) proc_batch_cnt += 1 n_samples += data.shape[0] print('proc_batch_cnt: ', proc_batch_cnt, n_samples) t1 = datetime.datetime.now().timestamp() print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) total_time += (t1-t0) self.reset_test_metrics() for data, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data, label)) ds = ds.batch(BATCH_SIZE) for mini_batch in ds: self.test_step(mini_batch[0], mini_batch[1]) print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) print('------------------------------------------------------') tst_loss = self.test_loss.result().numpy() if tst_loss < best_test_loss: best_test_loss = tst_loss ckpt_manager.save() if EARLY_STOP and es.check_stop(tst_loss): break print('total time: ', total_time) self.writer_train.close() self.writer_valid.close() self.writer_train_valid_loss.close() def build_model(self): self.build_srcnn() self.model = tf.keras.Model(self.inputs, self.logits) def restore(self, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.reset_test_metrics() for data, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data, label)) ds = ds.batch(BATCH_SIZE) for mini_batch_test in ds: self.predict(mini_batch_test[0], mini_batch_test[1]) print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) labels = np.concatenate(self.test_labels) preds = np.concatenate(self.test_preds) print(labels.shape, preds.shape) labels_denorm = denormalize(labels, label_param, mean_std_dct) preds_denorm = denormalize(preds, label_param, mean_std_dct) print(preds_denorm.min(), preds_denorm.max()) return labels_denorm, preds_denorm def do_evaluate(self, inputs, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.reset_test_metrics() pred = self.model([inputs], training=False) self.test_probs = pred pred = pred.numpy() return pred def run(self, directory, ckpt_dir=None, num_data_samples=50000): train_data_files = glob.glob(directory+'train*mres*.npy') valid_data_files = glob.glob(directory+'valid*mres*.npy') train_label_files = glob.glob(directory+'train*ires*.npy') valid_label_files = glob.glob(directory+'valid*ires*.npy') self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples) self.build_model() self.build_training() self.build_evaluation() self.do_training(ckpt_dir=ckpt_dir) def run_restore(self, directory, ckpt_dir): self.num_data_samples = 1000 valid_data_files = glob.glob(directory + 'valid*mres*.npy') valid_label_files = glob.glob(directory + 'valid*ires*.npy') self.setup_test_pipeline(valid_data_files, valid_label_files) self.build_model() self.build_training() self.build_evaluation() return self.restore(ckpt_dir) def run_evaluate(self, data, ckpt_dir): # data = tf.convert_to_tensor(data, dtype=tf.float32) self.num_data_samples = 80000 self.build_model() self.build_training() self.build_evaluation() return self.do_evaluate(data, ckpt_dir) def run_restore_static(directory, ckpt_dir, out_file=None): nn = SRCNN() labels_denorm, preds_denorm = nn.run_restore(directory, ckpt_dir) if out_file is not None: np.save(out_file, [labels_denorm, preds_denorm]) def run_evaluate_static(in_file, out_file, ckpt_dir): h5f = h5py.File(in_file, 'r') refl = get_grid_values_all(h5f, 'refl_0_65um_nom') ylen, xlen = refl.shape # refl = refl[int(ylen/2):ylen, :] LEN_Y, LEN_X = refl.shape print(LEN_Y, LEN_X) bt = get_grid_values_all(h5f, 'temp_11_0um_nom') ylen, xlen = bt.shape # bt = bt[int(ylen/2):ylen, :] cld_opd = get_grid_values_all(h5f, label_param) ylen, xlen = cld_opd.shape # cld_opd = cld_opd[int(ylen/2):ylen, :] cld_opd_hres = cld_opd.copy() nn = SRCNN(LEN_Y=LEN_Y-16, LEN_X=LEN_X-16) refl = np.where(np.isnan(refl), 0, bt) refl = refl[nn.slc_y_m, nn.slc_x_m] refl = np.expand_dims(refl, axis=0) refl = nn.upsample(refl) refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct) print('REFL done') bt = np.where(np.isnan(bt), 0, bt) bt = bt[nn.slc_y_m, nn.slc_x_m] bt = np.expand_dims(bt, axis=0) bt = nn.upsample(bt) bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct) print('BT done') # refl = get_grid_values_all(h5f, 'super/refl_0_65um') # refl = np.where(np.isnan(refl), 0, refl) # refl = np.expand_dims(refl, axis=0) # refl_lo, refl_hi, refl_std, refl_avg = get_min_max_std(refl) # refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct) # refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct) # refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct) # refl_lo = np.squeeze(refl_lo) # refl_hi = np.squeeze(refl_hi) # refl_avg = np.squeeze(refl_avg) cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd) cld_opd = cld_opd[nn.slc_y_m, nn.slc_x_m] cld_opd = np.expand_dims(cld_opd, axis=0) cld_opd = nn.upsample(cld_opd) cld_opd = normalize(cld_opd, label_param, mean_std_dct) print('OPD done') data = np.stack([bt, refl, cld_opd], axis=3) h5f.close() cld_opd_sres = nn.run_evaluate(data, ckpt_dir) cld_opd_sres = denormalize(cld_opd_sres, label_param, mean_std_dct) _, ylen, xlen, _ = cld_opd_sres.shape print('OUT: ', ylen, xlen) cld_opd_sres_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) refl_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) cld_opd_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) border = int((KERNEL_SIZE - 1) / 2) cld_opd_sres_out[border:(border+ylen), border:(border+xlen)] = cld_opd_sres[0, :, :, 0] refl_out[0:(ylen+2*border), 0:(xlen+2*border)] = refl[0, :, :] cld_opd_out[0:(ylen+2*border), 0:(xlen+2*border)] = cld_opd[0, :, :] refl_out = denormalize(refl_out, 'refl_0_65um_nom', mean_std_dct) cld_opd_out = denormalize(cld_opd_out, label_param, mean_std_dct) if out_file is not None: np.save(out_file, (cld_opd_sres_out, refl_out, cld_opd_out, cld_opd_hres)) else: return cld_opd_sres_out, bt, refl if __name__ == "__main__": nn = SRCNN() nn.run('matchup_filename')