import numpy as np import h5py from util.util import get_grid_values, get_grid_values_all, is_night, is_day, compute_lwc_iwc, get_fill_attrs import glob import os from aeolus.datasource import CLAVRx_VIIRS from icing.moon_phase import * from pathlib import Path target_param = 'cloud_probability' # target_param = 'cld_opd_dcomp' group_name_i = 'super/' group_name_m = 'orig/' solzen_name = group_name_m + 'solar_zenith' label_params = [group_name_i+target_param] data_params = [group_name_m+'temp_11_0um', group_name_m+'refl_0_65um', group_name_m+target_param] def keep_tile(param, param_s, tile): k = param_s.index(param) grd_k = tile[k, ].copy() if target_param == 'cloud_probability': grd_k, bflag = process_cld_prob_(grd_k) elif target_param == 'cld_opd_dcomp': grd_k, bflag = process_cld_opd_(grd_k) if grd_k is not None: tile[k, ] = grd_k return tile, bflag else: return None, bflag def process_cld_prob_(grd_k): keep = np.invert(np.isnan(grd_k)) num_keep = np.sum(keep) if num_keep / grd_k.size < 0.98: return None, True keep_clr = np.where(keep, grd_k < 0.20, False) frac_keep = np.sum(keep_clr)/num_keep if not (0.38 < frac_keep < 0.62): return None, False grd_k = np.where(np.invert(keep), 0, grd_k) # Convert NaNs to 0 return grd_k, False def process_cld_opd_(grd_k): keep = np.invert(np.isnan(grd_k)) num_keep = np.sum(keep) if num_keep / grd_k.size < 0.98: return None, True grd_k = np.where(np.invert(keep), 0, grd_k) keep = np.where(keep, np.logical_and(0.1 < grd_k, grd_k < 158.0), False) if np.sum(keep)/num_keep < 0.50: return None, False return grd_k, False def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', start=10): cnt = start total_num_train_samples = 0 total_num_valid_samples = 0 num_keep_x_tiles = 14 path = directory + '**' + '/' + pattern data_files = glob.glob(path, recursive=True) label_valid_tiles = [] label_train_tiles = [] data_valid_tiles = [] data_train_tiles = [] f_cnt = 0 num_files = len(data_files) print('Start, number of files: ', num_files) total_num_not_missing = 0 for idx, data_f in enumerate(data_files): # if idx % 4 == 0: # if we want to skip some files if True: try: h5f = h5py.File(data_f, 'r') except: print('cant open file: ', data_f) continue try: num_not_missing = run(h5f, data_params, data_train_tiles, data_valid_tiles, label_params, label_train_tiles, label_valid_tiles, num_keep_x_tiles=num_keep_x_tiles, tile_width=64, kernel_size=7, day_night=day_night) except Exception as e: print(e) h5f.close() continue print(data_f) f_cnt += 1 h5f.close() if len(data_train_tiles) == 0 and len(data_valid_tiles) == 0: continue if (f_cnt % 20) == 0: num_valid_samples = 0 if len(data_valid_tiles) > 0: label_valid = np.stack(label_valid_tiles) data_valid = np.stack(data_valid_tiles) np.save(out_directory + 'data_valid_' + str(cnt), data_valid) np.save(out_directory + 'label_valid_' + str(cnt), label_valid) num_valid_samples = data_valid.shape[0] num_train_samples = 0 if len(data_train_tiles) > 0: label_train = np.stack(label_train_tiles) data_train = np.stack(data_train_tiles) np.save(out_directory + 'label_train_' + str(cnt), label_train) np.save(out_directory + 'data_train_' + str(cnt), data_train) num_train_samples = data_train.shape[0] label_valid_tiles = [] label_train_tiles = [] data_valid_tiles = [] data_train_tiles = [] print(' num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt/num_files)*100)) total_num_train_samples += num_train_samples total_num_valid_samples += num_valid_samples total_num_not_missing += num_not_missing print('total_num_train_samples, total_num_valid_samples, total_num_not_missing: ', total_num_train_samples, total_num_valid_samples, total_num_not_missing) print('--------------------------------------------------') cnt += 1 print('** total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples) # tile_width: Must be even! # kernel_size: Must be odd! def run(h5f, param_s, train_tiles, valid_tiles, lbl_param_s, lbl_train_tiles, lbl_valid_tiles, num_keep_x_tiles=8, tile_width=64, kernel_size=3, day_night='DAY'): border = int((kernel_size - 1)/2) + 1 # Need to add for interpolation with no edge effects param_name = param_s[0] num_lines = h5f[param_name].shape[0] num_pixels = h5f[param_name].shape[1] # Must be even if day_night != 'BOTH': solzen = get_grid_values(h5f, solzen_name, 0, 0, None, num_lines, num_pixels) grd_s = [] for param in param_s: try: grd = get_grid_values(h5f, param, 0, 0, None, num_lines, num_pixels) grd_s.append(grd) except Exception as e: print(e) return data = np.stack(grd_s) grd_s = [] for param in lbl_param_s: try: grd = get_grid_values(h5f, param, 0, 0, None, num_lines*2, num_pixels*2) grd_s.append(grd) except Exception as e: print(e) return label = np.stack(grd_s) tile_width += 2 * border i_skip = tile_width j_skip = tile_width i_start = int(num_pixels / 2) - int((num_keep_x_tiles * tile_width) / 2) j_start = 0 num_y_tiles = int(num_lines / tile_width) - 1 data_tiles = [] lbl_tiles = [] num_not_missing = 0 for j in range(num_y_tiles): j_a = j_start + j * j_skip j_b = j_a + tile_width for i in range(num_keep_x_tiles): i_a = i_start + i * i_skip i_b = i_a + tile_width if day_night == 'DAY' and not is_day(solzen[j_a:j_b, i_a:i_b]): continue elif day_night == 'NIGHT' and is_day(solzen[j_a:j_b, i_a:i_b]): continue nda = data[:, j_a:j_b, i_a:i_b] nda_lbl = label[:, j_a*2:j_b*2, i_a*2:i_b*2] nda_lbl, missing_flag = keep_tile(group_name_i+target_param, lbl_param_s, nda_lbl) if not missing_flag: num_not_missing += 1 if nda_lbl is not None: data_tiles.append(nda) lbl_tiles.append(nda_lbl) num_tiles = len(lbl_tiles) num_valid = int(num_tiles * 0.10) num_train = num_tiles - num_valid for k in range(num_train): train_tiles.append(data_tiles[k]) lbl_train_tiles.append(lbl_tiles[k]) for k in range(num_valid): valid_tiles.append(data_tiles[num_train + k]) lbl_valid_tiles.append(lbl_tiles[num_train + k]) return num_not_missing