from icing.pireps import pirep_icing import numpy as np import pickle import os from util.util import get_time_tuple_utc, GenericException, add_time_range_to_filename, is_night, is_day, \ check_oblique, get_timestamp, homedir, get_indexes_within_threshold from aeolus.datasource import CLAVRx, CLAVRx_VIIRS, GOESL1B, CLAVRx_H08 import h5py import re import datetime from datetime import timezone import glob from skyfield import api, almanac goes_date_format = '%Y%j%H' goes16_directory = '/arcdata/goes/grb/goes16' # /year/date/abi/L1b/RadC clavrx_dir = '/ships19/cloud/scratch/ICING/' #clavrx_dir = '/data/Personal/rink/clavrx/' clavrx_viirs_dir = '/apollo/cloud/scratch/Satellite_Output/NASA-SNPP_VIIRS/global/2019_DNB_for_Rink_wDBfix/level2_h5/' clavrx_test_dir = '/data/Personal/rink/clavrx/' dir_fmt = '%Y_%m_%d_%j' # dir_list = [f.path for f in os.scandir('.') if f.is_dir()] ds_dct = {} goes_ds_dct = {} # --- CLAVRx Radiometric parameters and metadata ------------------------------------------------ l1b_ds_list = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] l1b_ds_types = ['f4' for ds in l1b_ds_list] l1b_ds_fill = [-32767 for i in range(10)] + [-32768 for i in range(5)] l1b_ds_range = ['actual_range' for ds in l1b_ds_list] # --- CLAVRx L2 parameters and metadata ds_list = ['cld_height_acha', 'cld_geo_thick', 'cld_press_acha', 'sensor_zenith_angle', 'supercooled_prob_acha', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_opd_acha', 'solar_zenith_angle', 'cld_reff_acha', 'cld_reff_dcomp', 'cld_reff_dcomp_1', 'cld_reff_dcomp_2', 'cld_reff_dcomp_3', 'cld_opd_dcomp', 'cld_opd_dcomp_1', 'cld_opd_dcomp_2', 'cld_opd_dcomp_3', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp', 'cld_emiss_acha', 'conv_cloud_fraction', 'cloud_type', 'cloud_phase', 'cloud_mask'] ds_types = ['f4' for i in range(23)] + ['i1' for i in range(3)] ds_fill = [-32768 for i in range(23)] + [-128 for i in range(3)] ds_range = ['actual_range' for i in range(23)] + [None for i in range(3)] # -------------------------------------------- # --- CLAVRx VIIRS L2 parameters and metadata # ds_list = ['cld_height_acha', 'cld_geo_thick', 'cld_press_acha', 'sensor_zenith_angle', 'supercooled_prob_acha', # 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_opd_acha', 'solar_zenith_angle', # 'cld_reff_acha', 'cld_reff_dcomp', 'cld_reff_dcomp_1', 'cld_reff_dcomp_2', 'cld_reff_dcomp_3', # 'cld_opd_dcomp', 'cld_opd_dcomp_1', 'cld_opd_dcomp_2', 'cld_opd_dcomp_3', 'cld_cwp_dcomp', 'iwc_dcomp', # 'lwc_dcomp', 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_opd_nlcomp', 'cld_reff_nlcomp', 'cloud_type', 'cloud_phase', 'cloud_mask'] # ds_types = ['f4' for i in range(25)] + ['i1' for i in range(3)] # ds_fill = [-32768 for i in range(25)] + [-128 for i in range(3)] # ds_range = ['actual_range' for i in range(25)] + [None for i in range(3)] # -------------------------------------------- # An example file for accessing and copying metadata a_clvr_file = homedir+'data/clavrx/clavrx_OR_ABI-L1b-RadC-M3C01_G16_s20190020002186.level2.nc' #a_clvr_file = homedir+'data/clavrx/RadC/265/clavrx_OR_ABI-L1b-RadC-M6C01_G16_s20212651711172.level2.nc' # VIIRS #a_clvr_file = homedir+'data/clavrx/clavrx_snpp_viirs.A2019071.0000.001.2019071061610.uwssec_B00038187.level2.h5' # Location of files for tile/FOV extraction # icing_files = [f for f in glob.glob('/data/Personal/rink/icing_ml/icing_2*_DAY.h5')] # icing_files = [f for f in glob.glob('/data/Personal/rink/icing_ml/icing_l1b_2*_DAY.h5')] # icing_files = [f for f in glob.glob('/data/Personal/rink/icing_ml/icing_l1b_2*_ANY.h5')] icing_l1b_files = [] # no_icing_files = [f for f in glob.glob('/data/Personal/rink/icing_ml/no_icing_2*_DAY.h5')] # no_icing_files = [f for f in glob.glob('/data/Personal/rink/icing_ml/no_icing_l1b_2*_DAY.h5')] # no_icing_files = [f for f in glob.glob('/data/Personal/rink/icing_ml/no_icing_l1b_2*_ANY.h5')] no_icing_l1b_files = [] train_params_day = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha', 'solar_zenith_angle', 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp', 'cloud_phase', 'cloud_mask'] train_params_night = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha', 'cld_reff_acha', 'cld_opd_acha', 'cloud_phase', 'cloud_mask'] def setup(pirep_file=homedir+'data/pirep/pireps_20180101_20200331.csv'): ice_dict, no_ice_dict, neg_ice_dict = pirep_icing(pirep_file) return ice_dict, no_ice_dict, neg_ice_dict def get_clavrx_datasource(timestamp, platform): if platform == 'GOES': return get_clavrx_datasource_goes(timestamp) elif platform == 'VIIRS': return get_clavrx_datasource_viirs(timestamp) def get_clavrx_datasource_goes(timestamp): dt_obj, time_tup = get_time_tuple_utc(timestamp) date_dir_str = dt_obj.strftime(dir_fmt) ds = ds_dct.get(date_dir_str) if ds is None: ds = CLAVRx(clavrx_dir + date_dir_str + '/') ds_dct[date_dir_str] = ds return ds def get_clavrx_datasource_viirs(timestamp): dt_obj, time_tup = get_time_tuple_utc(timestamp) date_dir_str = dt_obj.strftime('%j') ds = ds_dct.get(date_dir_str) if ds is None: ds = CLAVRx_VIIRS(clavrx_viirs_dir + date_dir_str + '/') ds_dct[date_dir_str] = ds return ds def get_goes_datasource(timestamp): dt_obj, time_tup = get_time_tuple_utc(timestamp) yr_dir = str(dt_obj.timetuple().tm_year) date_dir = dt_obj.strftime(dir_fmt) files_path = goes16_directory + '/' + yr_dir + '/' + date_dir + '/abi' + '/L1b' + '/RadC/' ds = goes_ds_dct.get(date_dir) if ds is None: ds = GOESL1B(files_path) goes_ds_dct[date_dir] = ds return ds def get_grid_values(h5f, grid_name, j_c, i_c, half_width, num_j=None, num_i=None, scale_factor_name='scale_factor', add_offset_name='add_offset', fill_value_name='_FillValue', range_name='actual_range', fill_value=None): hfds = h5f[grid_name] attrs = hfds.attrs if attrs is None: raise GenericException('No attributes object for: '+grid_name) ylen, xlen = hfds.shape if half_width is not None: j_l = j_c-half_width i_l = i_c-half_width if j_l < 0 or i_l < 0: return None j_r = j_c+half_width+1 i_r = i_c+half_width+1 if j_r >= ylen or i_r >= xlen: return None else: j_l = j_c j_r = j_c + num_j + 1 i_l = i_c i_r = i_c + num_i + 1 grd_vals = hfds[j_l:j_r, i_l:i_r] if fill_value is not None: grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals) if scale_factor_name is not None: attr = attrs.get(scale_factor_name) if attr is None: raise GenericException('Attribute: '+scale_factor_name+' not found for dataset: '+grid_name) if np.isscalar(attr): scale_factor = attr else: scale_factor = attr[0] grd_vals = grd_vals * scale_factor if add_offset_name is not None: attr = attrs.get(add_offset_name) if attr is None: raise GenericException('Attribute: '+add_offset_name+' not found for dataset: '+grid_name) if np.isscalar(attr): add_offset = attr else: add_offset = attr[0] grd_vals = grd_vals + add_offset if range_name is not None: attr = attrs.get(range_name) if attr is None: raise GenericException('Attribute: '+range_name+' not found for dataset: '+grid_name) low = attr[0] high = attr[1] grd_vals = np.where(grd_vals < low, np.nan, grd_vals) grd_vals = np.where(grd_vals > high, np.nan, grd_vals) elif fill_value_name is not None: attr = attrs.get(fill_value_name) if attr is None: raise GenericException('Attribute: '+fill_value_name+' not found for dataset: '+grid_name) if np.isscalar(attr): fill_value = attr else: fill_value = attr[0] grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals) return grd_vals def create_file(filename, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, icing_intensity, unq_ids): h5f_expl = h5py.File(a_clvr_file, 'r') h5f = h5py.File(filename, 'w') for idx, ds_name in enumerate(ds_list): data = data_dct[ds_name] h5f.create_dataset(ds_name, data=data, dtype=ds_types[idx]) lon_ds = h5f.create_dataset('longitude', data=lon_c, dtype='f4') lon_ds.dims[0].label = 'time' lon_ds.attrs.create('units', data='degrees_east') lon_ds.attrs.create('long_name', data='PIREP longitude') lat_ds = h5f.create_dataset('latitude', data=lat_c, dtype='f4') lat_ds.dims[0].label = 'time' lat_ds.attrs.create('units', data='degrees_north') lat_ds.attrs.create('long_name', data='PIREP latitude') time_ds = h5f.create_dataset('time', data=time_s) time_ds.dims[0].label = 'time' time_ds.attrs.create('units', data='seconds since 1970-1-1 00:00:00') time_ds.attrs.create('long_name', data='PIREP time') ice_alt_ds = h5f.create_dataset('icing_altitude', data=fl_alt_s, dtype='f4') ice_alt_ds.dims[0].label = 'time' ice_alt_ds.attrs.create('units', data='m') ice_alt_ds.attrs.create('long_name', data='PIREP altitude') if icing_intensity is not None: icing_int_ds = h5f.create_dataset('icing_intensity', data=icing_intensity, dtype='i4') icing_int_ds.attrs.create('long_name', data='From PIREP. 0:No intensity report, 1:Trace, 2:Light, 3:Light Moderate, 4:Moderate, 5:Moderate Severe, 6:Severe') unq_ids_ds = h5f.create_dataset('unique_id', data=unq_ids, dtype='i4') unq_ids_ds.attrs.create('long_name', data='ID mapping to PIREP icing dictionary: see pireps.py') # copy relevant attributes for ds_name in ds_list: h5f_ds = h5f[ds_name] h5f_ds.attrs.create('standard_name', data=h5f_expl[ds_name].attrs.get('standard_name')) h5f_ds.attrs.create('long_name', data=h5f_expl[ds_name].attrs.get('long_name')) h5f_ds.attrs.create('units', data=h5f_expl[ds_name].attrs.get('units')) h5f_ds.dims[0].label = 'time' h5f_ds.dims[1].label = 'y' h5f_ds.dims[2].label = 'x' h5f.close() h5f_expl.close() def run(pirep_dct, platform, outfile=None, outfile_l1b=None, dt_str_start=None, dt_str_end=None): time_keys = list(pirep_dct.keys()) l1b_grd_dct = {name: [] for name in l1b_ds_list} ds_grd_dct = {name: [] for name in ds_list} t_start = None t_end = None if (dt_str_start is not None) and (dt_str_end is not None): dto = datetime.datetime.strptime(dt_str_start, '%Y-%m-%d_%H:%M').replace(tzinfo=timezone.utc) dto.replace(tzinfo=timezone.utc) t_start = dto.timestamp() dto = datetime.datetime.strptime(dt_str_end, '%Y-%m-%d_%H:%M').replace(tzinfo=timezone.utc) dto.replace(tzinfo=timezone.utc) t_end = dto.timestamp() lon_s = np.zeros(1) lat_s = np.zeros(1) last_clvr_file = None last_h5f = None nav = None lon_c = [] lat_c = [] time_s = [] fl_alt_s = [] ice_int_s = [] unq_ids = [] for idx, time in enumerate(time_keys): if t_start is not None: if time < t_start: continue if time > t_end: continue try: clvr_ds = get_clavrx_datasource(time, platform) except Exception: print('run: Problem retrieving Datasource') continue clvr_file = clvr_ds.get_file(time)[0] if clvr_file is None: continue if clvr_file != last_clvr_file: try: h5f = h5py.File(clvr_file, 'r') nav = clvr_ds.get_navigation(h5f) except Exception: if h5f is not None: h5f.close() print('Problem with file: ', clvr_file) continue if last_h5f is not None: last_h5f.close() last_h5f = h5f last_clvr_file = clvr_file else: h5f = last_h5f cc = ll = -1 reports = pirep_dct[time] for tup in reports: lat, lon, fl, I, uid, rpt_str = tup lat_s[0] = lat lon_s[0] = lon cc_a, ll_a = nav.earth_to_lc_s(lon_s, lat_s) # non-navigable, skip if cc_a[0] < 0 or ll_a[0] < 0: continue if cc_a[0] == cc and ll_a[0] == ll: # time adjacent duplicate, skip continue else: cc = cc_a[0] ll = ll_a[0] cnt_a = 0 for didx, ds_name in enumerate(ds_list): gvals = get_grid_values(h5f, ds_name, ll_a[0], cc_a[0], 20, fill_value_name=None, range_name=ds_range[didx], fill_value=ds_fill[didx]) if gvals is not None: ds_grd_dct[ds_name].append(gvals) cnt_a += 1 cnt_b = 0 for didx, ds_name in enumerate(l1b_ds_list): gvals = get_grid_values(h5f, ds_name, ll_a[0], cc_a[0], 20, fill_value_name=None, range_name=l1b_ds_range[didx], fill_value=l1b_ds_fill[didx]) if gvals is not None: l1b_grd_dct[ds_name].append(gvals) cnt_b += 1 if cnt_a > 0 and cnt_a != len(ds_list): raise GenericException('weirdness') if cnt_b > 0 and cnt_b != len(l1b_ds_list): raise GenericException('weirdness') if cnt_a == len(ds_list) and cnt_b == len(l1b_ds_list): lon_c.append(lon_s[0]) lat_c.append(lat_s[0]) time_s.append(time) fl_alt_s.append(fl) ice_int_s.append(I) unq_ids.append(uid) if len(time_s) == 0: return t_start = time_s[0] t_end = time_s[len(time_s)-1] data_dct = {} for ds_name in ds_list: data_dct[ds_name] = np.array(ds_grd_dct[ds_name]) lon_c = np.array(lon_c) lat_c = np.array(lat_c) time_s = np.array(time_s) fl_alt_s = np.array(fl_alt_s) ice_int_s = np.array(ice_int_s) unq_ids = np.array(unq_ids) if outfile is not None: outfile = add_time_range_to_filename(outfile, t_start, t_end) create_file(outfile, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids) data_dct = {} for ds_name in l1b_ds_list: data_dct[ds_name] = np.array(l1b_grd_dct[ds_name]) if outfile_l1b is not None: outfile_l1b = add_time_range_to_filename(outfile_l1b, t_start, t_end) create_file(outfile_l1b, data_dct, l1b_ds_list, l1b_ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids) def run_viirs(pirep_dct, platform='VIIRS', outfile=None, outfile_l1b=None, dt_str_start=None, dt_str_end=None): time_keys = list(pirep_dct.keys()) l1b_grd_dct = {name: [] for name in l1b_ds_list} ds_grd_dct = {name: [] for name in ds_list} t_start = None t_end = None if (dt_str_start is not None) and (dt_str_end is not None): dto = datetime.datetime.strptime(dt_str_start, '%Y-%m-%d_%H:%M').replace(tzinfo=timezone.utc) dto.replace(tzinfo=timezone.utc) t_start = dto.timestamp() dto = datetime.datetime.strptime(dt_str_end, '%Y-%m-%d_%H:%M').replace(tzinfo=timezone.utc) dto.replace(tzinfo=timezone.utc) t_end = dto.timestamp() lon_s = np.zeros(1) lat_s = np.zeros(1) last_clvr_file = None last_h5f = None nav = None lon_c = [] lat_c = [] time_s = [] fl_alt_s = [] ice_int_s = [] unq_ids = [] num_rpts = 0 num_rpts_match = 0 for idx, time in enumerate(time_keys): if t_start is not None: if time < t_start: continue if time > t_end: continue num_rpts += 1 try: clvr_ds = get_clavrx_datasource(time, platform) except Exception: print('run: Problem retrieving Datasource') continue clvr_file = clvr_ds.get_file_containing_time(time)[0] if clvr_file is None: continue if clvr_file != last_clvr_file: try: h5f = h5py.File(clvr_file, 'r') nav = clvr_ds.get_navigation(h5f) except Exception: if h5f is not None: h5f.close() print('Problem with file: ', clvr_file) continue if last_h5f is not None: last_h5f.close() last_h5f = h5f last_clvr_file = clvr_file else: h5f = last_h5f cc = ll = -1 reports = pirep_dct[time] for tup in reports: lat, lon, fl, I, uid, rpt_str = tup lat_s[0] = lat lon_s[0] = lon print(' ',lon, lat) if not nav.check_inside(lon, lat): print('missed range check') continue cc_a, ll_a = nav.earth_to_lc_s(lon_s, lat_s) # non-navigable, skip if cc_a[0] < 0: print('cant navigate') continue if cc_a[0] == cc and ll_a[0] == ll: # time adjacent duplicate, skip continue else: cc = cc_a[0] ll = ll_a[0] cnt_a = 0 for didx, ds_name in enumerate(ds_list): gvals = get_grid_values(h5f, ds_name, ll_a[0], cc_a[0], 20, fill_value_name=None, range_name=ds_range[didx], fill_value=ds_fill[didx]) if gvals is not None: ds_grd_dct[ds_name].append(gvals) cnt_a += 1 cnt_b = 0 for didx, ds_name in enumerate(l1b_ds_list): gvals = get_grid_values(h5f, ds_name, ll_a[0], cc_a[0], 20, fill_value_name=None, range_name=l1b_ds_range[didx], fill_value=l1b_ds_fill[didx]) if gvals is not None: l1b_grd_dct[ds_name].append(gvals) cnt_b += 1 if cnt_a > 0 and cnt_a != len(ds_list): raise GenericException('weirdness') if cnt_b > 0 and cnt_b != len(l1b_ds_list): raise GenericException('weirdness') if cnt_a == len(ds_list) and cnt_b == len(l1b_ds_list): lon_c.append(lon_s[0]) lat_c.append(lat_s[0]) time_s.append(time) fl_alt_s.append(fl) ice_int_s.append(I) unq_ids.append(uid) print('num reports: ', num_rpts) if len(time_s) == 0: return t_start = time_s[0] t_end = time_s[len(time_s)-1] data_dct = {} for ds_name in ds_list: data_dct[ds_name] = np.array(ds_grd_dct[ds_name]) lon_c = np.array(lon_c) lat_c = np.array(lat_c) time_s = np.array(time_s) fl_alt_s = np.array(fl_alt_s) ice_int_s = np.array(ice_int_s) unq_ids = np.array(unq_ids) if outfile is not None: outfile = add_time_range_to_filename(outfile, t_start, t_end) create_file(outfile, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids) data_dct = {} for ds_name in l1b_ds_list: data_dct[ds_name] = np.array(l1b_grd_dct[ds_name]) if outfile_l1b is not None: outfile_l1b = add_time_range_to_filename(outfile_l1b, t_start, t_end) create_file(outfile_l1b, data_dct, l1b_ds_list, l1b_ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids) def pirep_info(pirep_dct): time_keys = list(pirep_dct.keys()) lat_s = [] lon_s = [] flt_lvl_s = [] ice_intensity_s = [] for tkey in time_keys: reports = pirep_dct[tkey] for tup in reports: lat, lon, fl, I, uid, rpt_str = tup lat_s.append(lat) lon_s.append(lon) flt_lvl_s.append(fl) ice_intensity_s.append(I) lat_s = np.array(lat_s) lon_s = np.array(lon_s) flt_lvl_s = np.array(flt_lvl_s) ice_intensity_s = np.array(ice_intensity_s) return flt_lvl_s, ice_intensity_s, lat_s, lon_s def analyze(ice_dct, no_ice_dct): last_file = None ice_files = [] ice_times = [] for ts in list(ice_dct.keys()): try: ds = get_goes_datasource(ts) goes_file, t_0, _ = ds.get_file(ts) if goes_file is not None and goes_file != last_file: ice_files.append(goes_file) ice_times.append(t_0) last_file = goes_file except Exception: continue last_file = None no_ice_files = [] no_ice_times = [] for ts in list(no_ice_dct.keys()): try: ds = get_goes_datasource(ts) goes_file, t_0, _ = ds.get_file(ts) if goes_file is not None and goes_file != last_file: no_ice_files.append(goes_file) no_ice_times.append(t_0) last_file = goes_file except Exception: continue ice_times = np.array(ice_times) no_ice_times = np.array(no_ice_times) itrsct_vals, comm1, comm2 = np.intersect1d(no_ice_times, ice_times, return_indices=True) ice_indexes = np.arange(len(ice_times)) ucomm2 = np.setxor1d(comm2, ice_indexes) np.random.seed(42) np.random.shuffle(ucomm2) ucomm2 = ucomm2[0:8000] files_comm = [] for i in comm2: files_comm.append(ice_files[i]) files_extra = [] times_extra = [] for i in ucomm2: files_extra.append(ice_files[i]) times_extra.append(ice_times[i]) files = files_comm + files_extra times = itrsct_vals.tolist() + times_extra times = np.array(times) sidxs = np.argsort(times) for i in sidxs: filename = os.path.split(files[i])[1] so = re.search('_s\\d{11}', filename) dt_str = so.group() print(dt_str[2:]) lon_space_hdeg = np.linspace(-180, 180, 721) lat_space_hdeg = np.linspace(-90, 90, 361) # grd_bins = np.full((lat_space.shape[0], lon_space.shape[0]), t_delta) def check_no_overlap(lon, lat, ts, grd_bins, t_delta=600.0): grd_x_hi = lon_space.shape[0] - 1 grd_y_hi = lat_space.shape[0] - 1 lon_idx = np.searchsorted(lon_space_hdeg, lon) lat_idx = np.searchsorted(lat_space_hdeg, lat) if lon_idx < 0 or lon_idx > grd_x_hi: return False if lat_idx < 0 or lat_idx > grd_y_hi: return False last_ts = grd_bins[lat_idx, lon_idx] if ts - last_ts > t_delta: grd_bins[lat_idx, lon_idx] = ts return True else: return False # This mostly reduces some categories for a degree of class balancing and removes no intensity reports def process(ice_dct, no_ice_dct, neg_ice_dct): t_delta = 600 # seconds new_ice_dct = {} new_no_ice_dct = {} new_neg_ice_dct = {} ice_keys_5_6 = [] ice_tidx_5_6 = [] ice_keys_1 = [] ice_tidx_1 = [] ice_keys_4 = [] ice_tidx_4 = [] ice_keys_3 = [] ice_tidx_3 = [] ice_keys_2 = [] ice_tidx_2 = [] print('num keys ice, no_ice, neg_ice: ', len(ice_dct), len(no_ice_dct), len(neg_ice_dct)) no_intensity_cnt = 0 num_ice_reports = 0 for ts in list(ice_dct.keys()): rpts = ice_dct[ts] for idx, tup in enumerate(rpts): num_ice_reports += 1 if tup[3] == 5 or tup[3] == 6: ice_keys_5_6.append(ts) ice_tidx_5_6.append(idx) elif tup[3] == 1: ice_keys_1.append(ts) ice_tidx_1.append(idx) elif tup[3] == 4: ice_keys_4.append(ts) ice_tidx_4.append(idx) elif tup[3] == 3: ice_keys_3.append(ts) ice_tidx_3.append(idx) elif tup[3] == 2: ice_keys_2.append(ts) ice_tidx_2.append(idx) else: no_intensity_cnt += 1 no_ice_keys = [] no_ice_tidx = [] for ts in list(no_ice_dct.keys()): rpts = no_ice_dct[ts] for idx, tup in enumerate(rpts): no_ice_keys.append(ts) no_ice_tidx.append(idx) neg_ice_keys = [] neg_ice_tidx = [] for ts in list(neg_ice_dct.keys()): rpts = neg_ice_dct[ts] for idx, tup in enumerate(rpts): neg_ice_keys.append(ts) neg_ice_tidx.append(idx) print('num ice reports, no ice, neg ice: ', num_ice_reports, len(no_ice_keys), len(neg_ice_keys)) print('------------------------------------------------') ice_keys_5_6 = np.array(ice_keys_5_6) ice_tidx_5_6 = np.array(ice_tidx_5_6) print('5_6: ', ice_keys_5_6.shape[0]) ice_keys_4 = np.array(ice_keys_4) ice_tidx_4 = np.array(ice_tidx_4) print('4: ', ice_keys_4.shape[0]) ice_keys_3 = np.array(ice_keys_3) ice_tidx_3 = np.array(ice_tidx_3) print('3: ', ice_keys_3.shape[0]) ice_keys_2 = np.array(ice_keys_2) ice_tidx_2 = np.array(ice_tidx_2) print('2: ', ice_keys_2.shape[0]) np.random.seed(42) ridxs = np.random.permutation(np.arange(ice_keys_2.shape[0])) ice_keys_2 = ice_keys_2[ridxs] ice_tidx_2 = ice_tidx_2[ridxs] num = int(ice_keys_2.shape[0] * 0.7) ice_keys_2 = ice_keys_2[0:num] ice_tidx_2 = ice_tidx_2[0:num] print('2: reduced: ', ice_tidx_2.shape) ice_keys_1 = np.array(ice_keys_1) ice_tidx_1 = np.array(ice_tidx_1) print('1: ', ice_keys_1.shape[0]) print('0: ', no_intensity_cnt) ice_keys = np.concatenate([ice_keys_1, ice_keys_2, ice_keys_3, ice_keys_4, ice_keys_5_6]) ice_tidx = np.concatenate([ice_tidx_1, ice_tidx_2, ice_tidx_3, ice_tidx_4, ice_tidx_5_6]) print('icing total reduced: ', ice_tidx.shape) sidxs = np.argsort(ice_keys) ice_keys = ice_keys[sidxs] ice_tidx = ice_tidx[sidxs] grd_bins = np.full((lat_space_hdeg.shape[0], lon_space_hdeg.shape[0]), -(t_delta+1)) cnt = 0 for idx, key in enumerate(ice_keys): rpts = ice_dct[key] tup = rpts[ice_tidx[idx]] lat, lon = tup[0], tup[1] if not check_no_overlap(lon, lat, key, grd_bins, t_delta=t_delta): continue cnt += 1 n_rpts = new_ice_dct.get(key) if n_rpts is None: n_rpts = [] new_ice_dct[key] = n_rpts n_rpts.append(tup) print('icing total no overlap: ', cnt) # ----------------------------------------------------- no_ice_keys = np.array(no_ice_keys) no_ice_tidx = np.array(no_ice_tidx) print('no ice total: ', no_ice_keys.shape[0]) np.random.seed(42) ridxs = np.random.permutation(np.arange(no_ice_keys.shape[0])) no_ice_keys = no_ice_keys[ridxs] no_ice_tidx = no_ice_tidx[ridxs] no_ice_keys = no_ice_keys[::5] no_ice_tidx = no_ice_tidx[::5] print('no ice reduced: ', no_ice_keys.shape[0]) sidxs = np.argsort(no_ice_keys) no_ice_keys = no_ice_keys[sidxs] no_ice_tidx = no_ice_tidx[sidxs] grd_bins = np.full((lat_space_hdeg.shape[0], lon_space_hdeg.shape[0]), -(t_delta+1)) cnt = 0 for idx, key in enumerate(no_ice_keys): rpts = no_ice_dct[key] tup = rpts[no_ice_tidx[idx]] lat, lon = tup[0], tup[1] if not check_no_overlap(lon, lat, key, grd_bins, t_delta=t_delta): continue cnt += 1 n_rpts = new_no_ice_dct.get(key) if n_rpts is None: n_rpts = [] new_no_ice_dct[key] = n_rpts n_rpts.append(tup) print('no icing total no overlap: ', cnt) # ------------------------------------------------- # Previous for neg icing # neg_ice_keys = np.array(neg_ice_keys) # print('neg ice total: ', neg_ice_keys.shape[0]) # np.random.seed(42) # np.random.shuffle(neg_ice_keys) # neg_ice_keys = neg_ice_keys[0:12000] # uniq_sorted_neg_ice = np.unique(neg_ice_keys) # print('neg ice reduced: ', uniq_sorted_neg_ice.shape) # # for key in uniq_sorted_neg_ice: # new_neg_ice_dct[key] = neg_ice_dct[key] # ----------------------------------------------------- neg_ice_keys = np.array(neg_ice_keys) neg_ice_tidx = np.array(neg_ice_tidx) print('neg ice total: ', neg_ice_keys.shape[0]) grd_bins = np.full((lat_space_hdeg.shape[0], lon_space_hdeg.shape[0]), -(t_delta+1)) cnt = 0 for idx, key in enumerate(neg_ice_keys): rpts = neg_ice_dct[key] tup = rpts[neg_ice_tidx[idx]] lat, lon = tup[0], tup[1] if not check_no_overlap(lon, lat, key, grd_bins, t_delta=t_delta): continue cnt += 1 n_rpts = new_neg_ice_dct.get(key) if n_rpts is None: n_rpts = [] new_neg_ice_dct[key] = n_rpts n_rpts.append(tup) print('neg icing total no overlap: ', cnt) # ------------------------------------------------- return new_ice_dct, new_no_ice_dct, new_neg_ice_dct def process_boeing(ice_dct, no_ice_dct): new_no_ice_dct = {} print('num keys ice, no_ice: ', len(ice_dct), len(no_ice_dct)) no_ice_keys = [] no_ice_tidx = [] for ts in list(no_ice_dct.keys()): rpts = no_ice_dct[ts] for idx, tup in enumerate(rpts): no_ice_keys.append(ts) no_ice_tidx.append(idx) # ----------------------------------------------------- no_ice_keys = np.array(no_ice_keys) no_ice_tidx = np.array(no_ice_tidx) print('no ice total: ', no_ice_keys.shape[0]) np.random.seed(42) ridxs = np.random.permutation(np.arange(no_ice_keys.shape[0])) no_ice_keys = no_ice_keys[ridxs] no_ice_tidx = no_ice_tidx[ridxs] no_ice_keys = no_ice_keys[::10] no_ice_tidx = no_ice_tidx[::10] print('no ice reduced: ', no_ice_keys.shape[0]) sidxs = np.argsort(no_ice_keys) no_ice_keys = no_ice_keys[sidxs] no_ice_tidx = no_ice_tidx[sidxs] for idx, key in enumerate(no_ice_keys): rpts = no_ice_dct[key] tup = rpts[no_ice_tidx[idx]] n_rpts = new_no_ice_dct.get(key) if n_rpts is None: n_rpts = [] new_no_ice_dct[key] = n_rpts n_rpts.append(tup) # ------------------------------------------------- return ice_dct, new_no_ice_dct def analyze2(filename, filename_l1b): f = h5py.File(filename, 'r') icing_alt = f['icing_altitude'][:] cld_top_hgt = f['cld_height_acha'][:, 12:28, 12:28] cld_phase = f['cloud_phase'][:, 12:28, 12:28] cld_opd_dc = f['cld_opd_dcomp'][:, 12:28, 12:28] cld_opd = f['cld_opd_acha'][:, 12:28, 12:28] solzen = f['solar_zenith_angle'][:, 12:28, 12:28] f_l1b = h5py.File(filename_l1b, 'r') bt_11um = f_l1b['temp_11_0um_nom'][:, 12:28, 12:28] bt_11um = bt_11um.flatten() cld_opd = cld_opd.flatten() cld_opd_dc = cld_opd_dc.flatten() solzen = solzen.flatten() keep1 = np.invert(np.isnan(cld_opd)) keep2 = np.invert(np.isnan(solzen)) keep = keep1 & keep2 cld_opd = cld_opd[np.invert(np.isnan(cld_opd))] cld_opd_dc = cld_opd_dc[keep] solzen = solzen[keep] bt_11um = bt_11um[np.invert(np.isnan(bt_11um))] return cld_opd, bt_11um # -------------------------------------------- x_a = 10 x_b = 30 y_a = x_a y_b = x_b nx = ny = (x_b - x_a) nx_x_ny = nx * ny def run_daynight(filename, filename_l1b, day_night='ANY'): f = h5py.File(filename, 'r') f_l1b = h5py.File(filename_l1b, 'r') solzen = f['solar_zenith_angle'][:, y_a:y_b, x_a:x_b] satzen = f['sensor_zenith_angle'][:, y_a:y_b, x_a:x_b] num_obs = solzen.shape[0] idxs = [] for i in range(num_obs): if not check_oblique(satzen[i,]): continue if day_night == 'NIGHT' and is_night(solzen[i,]): idxs.append(i) elif day_night == 'DAY' and is_day(solzen[i,]): idxs.append(i) elif day_night == 'ANY': if is_day(solzen[i,]) or is_night(solzen[i,]): idxs.append(i) keep_idxs = np.array(idxs) data_dct = {} for didx, ds_name in enumerate(ds_list): data_dct[ds_name] = f[ds_name][keep_idxs,] lon_c = f['longitude'][keep_idxs] lat_c = f['latitude'][keep_idxs] time_s = f['time'][keep_idxs] fl_alt_s = f['icing_altitude'][keep_idxs] ice_int_s = f['icing_intensity'][keep_idxs] unq_ids = f['unique_id'][keep_idxs] path, fname = os.path.split(filename) fbase, fext = os.path.splitext(fname) outfile = path + '/' + fbase + '_' + day_night + fext create_file(outfile, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids) data_dct = {} for didx, ds_name in enumerate(l1b_ds_list): data_dct[ds_name] = f_l1b[ds_name][keep_idxs] path, fname = os.path.split(filename_l1b) fbase, fext = os.path.splitext(fname) outfile_l1b = path + '/' + fbase + '_' + day_night + fext create_file(outfile_l1b, data_dct, l1b_ds_list, l1b_ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids) f.close() f_l1b.close() def run_qc(filename, filename_l1b, day_night='ANY', pass_thresh_frac=0.20, icing=True): f = h5py.File(filename, 'r') icing_alt = f['icing_altitude'][:] cld_top_hgt = f['cld_height_acha'][:, y_a:y_b, x_a:x_b] cld_phase = f['cloud_phase'][:, y_a:y_b, x_a:x_b] if day_night == 'DAY': cld_opd = f['cld_opd_dcomp'][:, y_a:y_b, x_a:x_b] else: cld_opd = f['cld_opd_acha'][:, y_a:y_b, x_a:x_b] cld_mask = f['cloud_mask'][:, y_a:y_b, x_a:x_b] sol_zen = f['solar_zenith_angle'][:, y_a:y_b, x_a:x_b] sat_zen = f['sensor_zenith_angle'][:, y_a:y_b, x_a:x_b] f_l1b = h5py.File(filename_l1b, 'r') bt_11um = f_l1b['temp_11_0um_nom'][:, y_a:y_b, x_a:x_b] if icing: mask, idxs, num_tested = apply_qc_icing_pireps(icing_alt, cld_top_hgt, cld_phase, cld_opd, cld_mask, bt_11um, sol_zen, sat_zen, day_night=day_night) else: mask, idxs, num_tested = apply_qc_no_icing_pireps(icing_alt, cld_top_hgt, cld_phase, cld_opd, cld_mask, bt_11um, sol_zen, sat_zen, day_night=day_night) keep_idxs = [] for i in range(len(mask)): # frac = np.sum(mask[i]) / nx_x_ny frac = np.sum(mask[i]) / num_tested[i] if icing: if frac > pass_thresh_frac: keep_idxs.append(idxs[i]) elif frac > pass_thresh_frac: keep_idxs.append(idxs[i]) print('day_night, icing, all, valid, pass: ', day_night, icing, len(icing_alt), len(mask), len(keep_idxs)) print('-----------------------') keep_idxs = np.array(keep_idxs) data_dct = {} for didx, ds_name in enumerate(ds_list): data_dct[ds_name] = f[ds_name][keep_idxs,] lon_c = f['longitude'][keep_idxs] lat_c = f['latitude'][keep_idxs] time_s = f['time'][keep_idxs] fl_alt_s = f['icing_altitude'][keep_idxs] ice_int_s = f['icing_intensity'][keep_idxs] unq_ids = f['unique_id'][keep_idxs] path, fname = os.path.split(filename) fbase, fext = os.path.splitext(fname) outfile = path + '/' + fbase + '_' + 'QC' + '_' + day_night + fext create_file(outfile, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids) data_dct = {} for didx, ds_name in enumerate(l1b_ds_list): data_dct[ds_name] = f_l1b[ds_name][keep_idxs] path, fname = os.path.split(filename_l1b) fbase, fext = os.path.splitext(fname) outfile_l1b = path + '/' + fbase + '_' + 'QC' + '_' + day_night + fext create_file(outfile_l1b, data_dct, l1b_ds_list, l1b_ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids) f.close() f_l1b.close() return len(icing_alt), len(mask), len(keep_idxs) def apply_qc_icing_pireps(icing_alt, cld_top_hgt, cld_phase, cld_opd, cld_mask, bt_11um, solzen, satzen, day_night='ANY'): if day_night == 'DAY': opd_thick_threshold = 20 opd_thin_threshold = 1 elif day_night == 'NIGHT' or day_night == 'ANY': opd_thick_threshold = 2 opd_thin_threshold = 0.1 closeness = 50.0 # meters num_obs = len(icing_alt) cld_mask = cld_mask.reshape((num_obs, -1)) cld_top_hgt = cld_top_hgt.reshape((num_obs, -1)) cld_phase = cld_phase.reshape((num_obs, -1)) cld_opd = cld_opd.reshape((num_obs, -1)) bt_11um = bt_11um.reshape((num_obs, -1)) mask = [] idxs = [] num_tested = [] for i in range(num_obs): if not check_oblique(satzen[i,]): continue if day_night == 'NIGHT' and not is_night(solzen[i,]): continue elif day_night == 'DAY' and not is_day(solzen[i,]): continue elif day_night == 'ANY': pass # if not (is_day(solzen[i,]) or is_night(solzen[i,])): # continue keep_0 = np.logical_or(cld_mask[i,] == 2, cld_mask[i,] == 3) # cloudy keep_1 = np.invert(np.isnan(cld_top_hgt[i,])) keep_2 = np.invert(np.isnan(bt_11um[i,])) keep_3 = np.invert(np.isnan(cld_opd[i,])) keep = keep_0 & keep_1 & keep_2 & keep_3 num_keep = np.sum(keep) if num_keep == 0: continue # Test 1 keep = np.where(keep, (cld_top_hgt[i,] + closeness) > icing_alt[i], False) # if (np.sum(keep) / num_keep) < 0.80: # continue # Test2 keep = np.where(keep, np.invert((cld_phase[i,] == 4) & np.logical_and(cld_top_hgt[i,]+closeness > icing_alt[i], cld_top_hgt[i,]-closeness < icing_alt[i])), False) # Test4 keep = np.where(keep, np.invert((cld_phase[i,] == 4) & (cld_opd[i,] < opd_thin_threshold)), False) # Test5 and Test6 keep = np.where(keep, np.logical_and(bt_11um[i,] > 228.0, bt_11um[i,] < 270.0), False) # Test3 keep = np.where(keep, (cld_opd[i,] >= opd_thick_threshold) & (cld_phase[i,] == 4), False) mask.append(keep) idxs.append(i) num_tested.append(num_keep) return mask, idxs, num_tested def apply_qc_no_icing_pireps(icing_alt, cld_top_hgt, cld_phase, cld_opd, cld_mask, bt_11um, solzen, satzen, day_night='ANY'): if day_night == 'DAY': opd_thick_threshold = 20 opd_thin_threshold = 1 elif day_night == 'NIGHT' or day_night == 'ANY': opd_thick_threshold = 2 opd_thin_threshold = 0.1 closeness = 50.0 # meters num_obs = len(icing_alt) cld_mask = cld_mask.reshape((num_obs, -1)) cld_top_hgt = cld_top_hgt.reshape((num_obs, -1)) cld_phase = cld_phase.reshape((num_obs, -1)) cld_opd = cld_opd.reshape((num_obs, -1)) bt_11um = bt_11um.reshape((num_obs, -1)) mask = [] idxs = [] num_tested = [] for i in range(num_obs): if not check_oblique(satzen[i,]): continue if day_night == 'NIGHT' and not is_night(solzen[i,]): continue elif day_night == 'DAY' and not is_day(solzen[i,]): continue elif day_night == 'ANY': pass # if not (is_day(solzen[i,]) or is_night(solzen[i,])): # continue keep_0 = np.logical_or(cld_mask[i,] == 2, cld_mask[i,] == 3) # cloudy keep_1 = np.invert(np.isnan(cld_top_hgt[i,])) keep_2 = np.invert(np.isnan(bt_11um[i,])) # keep_3 = np.invert(np.isnan(cld_opd[i,])) # keep = keep_0 & keep_1 & keep_2 & keep_3 keep = keep_0 & keep_1 & keep_2 num_keep = np.sum(keep) if num_keep == 0: continue # Exp keep = np.where(keep, (cld_top_hgt[i,] + closeness) > icing_alt[i], False) #if (np.sum(keep) / num_keep) < 0.80: # continue # keep = np.where(keep, np.logical_and(bt_11um[i,] > 228.0, bt_11um[i,] < 273.0), False) # Test6 # keep = np.where(keep, (bt_11um[i,] < 228.0), False) # Test1 # keep = np.where(keep, cld_top_hgt[i,] > icing_alt[i], False) # Test3 # keep = np.where(keep, np.invert((cld_opd[i,] >= opd_thick_threshold) & (cld_phase[i,] == 4) & (cld_top_hgt[i,] > icing_alt[i])), False) mask.append(keep) idxs.append(i) num_tested.append(num_keep) return mask, idxs, num_tested def fov_extract(icing_files, no_icing_files, trnfile='/home/rink/fovs_l1b_train.h5', tstfile='/home/rink/fovs_l1b_test.h5', L1B_or_L2='L1B', split=0.2): ice_times = [] icing_int_s = [] ice_lons = [] ice_lats = [] no_ice_times = [] no_ice_lons = [] no_ice_lats = [] h5_s_icing = [] h5_s_no_icing = [] if L1B_or_L2 == 'L1B': params = l1b_ds_list param_types = l1b_ds_types elif L1B_or_L2 == 'L2': params = ds_list param_types = ds_types icing_data_dct = {ds: [] for ds in params} no_icing_data_dct = {ds: [] for ds in params} sub_indexes = np.arange(400) num_ice = 0 for fidx in range(len(icing_files)): fname = icing_files[fidx] f = h5py.File(fname, 'r') h5_s_icing.append(f) times = f['time'][:] num_obs = len(times) icing_int = f['icing_intensity'][:] lons = f['longitude'][:] lats = f['latitude'][:] cld_mask = f['cloud_mask'][:, 10:30, 10:30] cld_mask = cld_mask.reshape((num_obs, -1)) cld_top_temp = f['cld_temp_acha'][:, 10:30, 10:30] cld_top_temp = cld_top_temp.reshape((num_obs, -1)) for i in range(num_obs): keep_0 = np.logical_or(cld_mask[i,] == 2, cld_mask[i,] == 3) # cloudy keep_1 = np.invert(np.isnan(cld_top_temp[i,])) keep = keep_0 & keep_1 keep = np.where(keep, cld_top_temp[i,] < 273.0, False) k_idxs = sub_indexes[keep] np.random.shuffle(k_idxs) if len(k_idxs) > 20: k_idxs = k_idxs[0:20] else: k_idxs = k_idxs[0:len(k_idxs)] num_ice += len(k_idxs) for ds_name in params: dat = f[ds_name][i, 10:30, 10:30].flatten() icing_data_dct[ds_name].append(dat[k_idxs]) icing_int_s.append(np.full(len(k_idxs), icing_int[i])) ice_times.append(np.full(len(k_idxs), times[i])) ice_lons.append(np.full(len(k_idxs), lons[i])) ice_lats.append(np.full(len(k_idxs), lats[i])) print(fname) for ds_name in params: lst = icing_data_dct[ds_name] icing_data_dct[ds_name] = np.concatenate(lst) icing_int_s = np.concatenate(icing_int_s) ice_times = np.concatenate(ice_times) ice_lons = np.concatenate(ice_lons) ice_lats = np.concatenate(ice_lats) num_no_ice = 0 for fidx in range(len(no_icing_files)): fname = no_icing_files[fidx] f = h5py.File(fname, 'r') h5_s_no_icing.append(f) times = f['time'] num_obs = len(times) lons = f['longitude'] lats = f['latitude'] cld_mask = f['cloud_mask'][:, 10:30, 10:30] cld_mask = cld_mask.reshape((num_obs, -1)) cld_top_temp = f['cld_temp_acha'][:, 10:30, 10:30] cld_top_temp = cld_top_temp.reshape((num_obs, -1)) for i in range(num_obs): keep_0 = np.logical_or(cld_mask[i,] == 2, cld_mask[i,] == 3) # cloudy keep_1 = np.invert(np.isnan(cld_top_temp[i,])) keep = keep_0 & keep_1 keep = np.where(keep, cld_top_temp[i,] < 273.0, False) k_idxs = sub_indexes[keep] np.random.shuffle(k_idxs) if len(k_idxs) > 10: k_idxs = k_idxs[0:10] else: k_idxs = k_idxs[0:len(k_idxs)] num_no_ice += len(k_idxs) no_ice_times.append(np.full(len(k_idxs), times[i])) no_ice_lons.append(np.full(len(k_idxs), lons[i])) no_ice_lats.append(np.full(len(k_idxs), lats[i])) for ds_name in params: dat = f[ds_name][i, 10:30, 10:30].flatten() no_icing_data_dct[ds_name].append(dat[k_idxs]) print(fname) for ds_name in params: lst = no_icing_data_dct[ds_name] no_icing_data_dct[ds_name] = np.concatenate(lst) no_icing_int_s = np.full(num_no_ice, -1) no_ice_times = np.concatenate(no_ice_times) no_ice_lons = np.concatenate(no_ice_lons) no_ice_lats = np.concatenate(no_ice_lats) icing_intensity = np.concatenate([icing_int_s, no_icing_int_s]) icing_times = np.concatenate([ice_times, no_ice_times]) icing_lons = np.concatenate([ice_lons, no_ice_lons]) icing_lats = np.concatenate([ice_lats, no_ice_lats]) data_dct = {} for ds_name in params: data_dct[ds_name] = np.concatenate([icing_data_dct[ds_name], no_icing_data_dct[ds_name]]) # apply shuffle indexes # ds_indexes = np.arange(num_ice + num_no_ice) # np.random.shuffle(ds_indexes) # # for ds_name in train_params: # data_dct[ds_name] = data_dct[ds_name][ds_indexes] # icing_intensity = icing_intensity[ds_indexes] # icing_times = icing_times[ds_indexes] # icing_lons = icing_lons[ds_indexes] # icing_lats = icing_lats[ds_indexes] # do sort ds_indexes = np.argsort(icing_times) for ds_name in params: data_dct[ds_name] = data_dct[ds_name][ds_indexes] icing_intensity = icing_intensity[ds_indexes] icing_times = icing_times[ds_indexes] icing_lons = icing_lons[ds_indexes] icing_lats = icing_lats[ds_indexes] #trn_idxs, tst_idxs = split_data(icing_intensity.shape[0], shuffle=False, perc=split) all_idxs = np.arange(icing_intensity.shape[0]) splt_idx = int(icing_intensity.shape[0] * (1-split)) trn_idxs = all_idxs[0:splt_idx] tst_idxs = all_idxs[splt_idx:] trn_data_dct = {} for ds_name in params: trn_data_dct[ds_name] = data_dct[ds_name][trn_idxs,] trn_icing_intensity = icing_intensity[trn_idxs,] trn_icing_times = icing_times[trn_idxs,] trn_icing_lons = icing_lons[trn_idxs,] trn_icing_lats = icing_lats[trn_idxs,] write_file(trnfile, params, param_types, trn_data_dct, trn_icing_intensity, trn_icing_times, trn_icing_lons, trn_icing_lats) tst_data_dct = {} for ds_name in params: tst_data_dct[ds_name] = data_dct[ds_name][tst_idxs,] tst_icing_intensity = icing_intensity[tst_idxs,] tst_icing_times = icing_times[tst_idxs,] tst_icing_lons = icing_lons[tst_idxs,] tst_icing_lats = icing_lats[tst_idxs,] # do sort ds_indexes = np.argsort(tst_icing_times) for ds_name in params: tst_data_dct[ds_name] = tst_data_dct[ds_name][ds_indexes] tst_icing_intensity = tst_icing_intensity[ds_indexes] tst_icing_times = tst_icing_times[ds_indexes] tst_icing_lons = tst_icing_lons[ds_indexes] tst_icing_lats = tst_icing_lats[ds_indexes] write_file(tstfile, params, param_types, tst_data_dct, tst_icing_intensity, tst_icing_times, tst_icing_lons, tst_icing_lats) # --- close files for h5f in h5_s_icing: h5f.close() for h5f in h5_s_no_icing: h5f.close() def tile_extract(icing_files, no_icing_files, trnfile='/home/rink/tiles_train.h5', vldfile='/home/rink/tiles_valid.h5', tstfile='/home/rink/tiles_test.h5', L1B_or_L2='L1B', cld_mask_name='cloud_mask', augment=False, do_split=True): # 16x16 n_a, n_b = 12, 28 m_a, m_b = 12, 28 # 10x10 # n_a, n_b = 15, 25 # m_a, m_b = 15, 25 icing_int_s = [] ice_time_s = [] no_ice_time_s = [] ice_lon_s = [] no_ice_lon_s = [] ice_lat_s = [] no_ice_lat_s = [] ice_flt_alt_s = [] no_ice_flt_alt_s = [] h5_s_icing = [] h5_s_no_icing = [] if L1B_or_L2 == 'L1B': params = l1b_ds_list param_types = l1b_ds_types elif L1B_or_L2 == 'L2': params = ds_list param_types = ds_types icing_data_dct = {ds: [] for ds in params} no_icing_data_dct = {ds: [] for ds in params} for fidx in range(len(icing_files)): fname = icing_files[fidx] f = h5py.File(fname, 'r') h5_s_icing.append(f) times = f['time'][:] num_obs = len(times) lons = f['longitude'] lats = f['latitude'] icing_int = f['icing_intensity'][:] flt_altitude = f['icing_altitude'][:] for i in range(num_obs): cld_msk = f[cld_mask_name][i, n_a:n_b, m_a:m_b] for ds_name in params: dat = f[ds_name][i, n_a:n_b, m_a:m_b] if L1B_or_L2 == 'L2': keep = np.logical_or(cld_msk == 2, cld_msk == 3) # cloudy np.where(keep, dat, np.nan) icing_data_dct[ds_name].append(dat) icing_int_s.append(icing_int[i]) ice_time_s.append(times[i]) ice_lon_s.append(lons[i]) ice_lat_s.append(lats[i]) ice_flt_alt_s.append(flt_altitude[i]) print(fname) for ds_name in params: lst = icing_data_dct[ds_name] icing_data_dct[ds_name] = np.stack(lst, axis=0) icing_int_s = np.array(icing_int_s) ice_time_s = np.array(ice_time_s) ice_lon_s = np.array(ice_lon_s) ice_lat_s = np.array(ice_lat_s) ice_flt_alt_s = np.array(ice_flt_alt_s) num_ice = icing_int_s.shape[0] # No icing ------------------------------------------------------------ num_no_ice = 0 for fidx in range(len(no_icing_files)): fname = no_icing_files[fidx] f = h5py.File(fname, 'r') h5_s_no_icing.append(f) times = f['time'] num_obs = len(times) lons = f['longitude'] lats = f['latitude'] flt_altitude = f['icing_altitude'][:] for i in range(num_obs): cld_msk = f[cld_mask_name][i, n_a:n_b, m_a:m_b] for ds_name in params: dat = f[ds_name][i, n_a:n_b, m_a:m_b] if L1B_or_L2 == 'L2': keep = np.logical_or(cld_msk == 2, cld_msk == 3) # cloudy np.where(keep, dat, np.nan) no_icing_data_dct[ds_name].append(dat) num_no_ice += 1 no_ice_time_s.append(times[i]) no_ice_lon_s.append(lons[i]) no_ice_lat_s.append(lats[i]) no_ice_flt_alt_s.append(flt_altitude[i]) print(fname) for ds_name in params: lst = no_icing_data_dct[ds_name] no_icing_data_dct[ds_name] = np.stack(lst, axis=0) no_icing_int_s = np.full(num_no_ice, -1) no_ice_time_s = np.array(no_ice_time_s) no_ice_lon_s = np.array(no_ice_lon_s) no_ice_lat_s = np.array(no_ice_lat_s) no_ice_flt_alt_s = np.array(no_ice_flt_alt_s) icing_intensity = np.concatenate([icing_int_s, no_icing_int_s]) icing_times = np.concatenate([ice_time_s, no_ice_time_s]) icing_lons = np.concatenate([ice_lon_s, no_ice_lon_s]) icing_lats = np.concatenate([ice_lat_s, no_ice_lat_s]) icing_alt = np.concatenate([ice_flt_alt_s, no_ice_flt_alt_s]) data_dct = {} for ds_name in params: data_dct[ds_name] = np.concatenate([icing_data_dct[ds_name], no_icing_data_dct[ds_name]]) # do sort ------------------------------------- ds_indexes = np.argsort(icing_times) for ds_name in params: data_dct[ds_name] = data_dct[ds_name][ds_indexes] icing_intensity = icing_intensity[ds_indexes] icing_times = icing_times[ds_indexes] icing_lons = icing_lons[ds_indexes] icing_lats = icing_lats[ds_indexes] icing_alt = icing_alt[ds_indexes] if do_split: trn_idxs, vld_idxs, tst_idxs = split_data(icing_times) else: trn_idxs = np.arange(icing_intensity.shape[0]) tst_idxs = None # --------------------------------------------- trn_data_dct = {} for ds_name in params: trn_data_dct[ds_name] = data_dct[ds_name][trn_idxs,] trn_icing_intensity = icing_intensity[trn_idxs,] trn_icing_times = icing_times[trn_idxs,] trn_icing_lons = icing_lons[trn_idxs,] trn_icing_lats = icing_lats[trn_idxs,] trn_icing_alt = icing_alt[trn_idxs,] # Data augmentation ------------------------------------------------------------- if augment: trn_data_dct_aug = {ds_name: [] for ds_name in params} trn_icing_intensity_aug = [] trn_icing_times_aug = [] trn_icing_lons_aug = [] trn_icing_lats_aug = [] trn_icing_alt_aug = [] for k in range(trn_icing_intensity.shape[0]): iceint = trn_icing_intensity[k] icetime = trn_icing_times[k] icelon = trn_icing_lons[k] icelat = trn_icing_lats[k] icealt = trn_icing_alt[k] if iceint == 3 or iceint == 4 or iceint == 5 or iceint == 6: for ds_name in params: dat = trn_data_dct[ds_name] trn_data_dct_aug[ds_name].append(np.fliplr(dat[k,])) trn_data_dct_aug[ds_name].append(np.flipud(dat[k,])) trn_data_dct_aug[ds_name].append(np.rot90(dat[k,])) trn_icing_intensity_aug.append(iceint) trn_icing_intensity_aug.append(iceint) trn_icing_intensity_aug.append(iceint) trn_icing_times_aug.append(icetime) trn_icing_times_aug.append(icetime) trn_icing_times_aug.append(icetime) trn_icing_lons_aug.append(icelon) trn_icing_lons_aug.append(icelon) trn_icing_lons_aug.append(icelon) trn_icing_lats_aug.append(icelat) trn_icing_lats_aug.append(icelat) trn_icing_lats_aug.append(icelat) trn_icing_alt_aug.append(icealt) trn_icing_alt_aug.append(icealt) trn_icing_alt_aug.append(icealt) for ds_name in params: trn_data_dct_aug[ds_name] = np.stack(trn_data_dct_aug[ds_name]) trn_icing_intensity_aug = np.stack(trn_icing_intensity_aug) trn_icing_times_aug = np.stack(trn_icing_times_aug) trn_icing_lons_aug = np.stack(trn_icing_lons_aug) trn_icing_lats_aug = np.stack(trn_icing_lats_aug) trn_icing_alt_aug = np.stack(trn_icing_alt_aug) for ds_name in params: trn_data_dct[ds_name] = np.concatenate([trn_data_dct[ds_name], trn_data_dct_aug[ds_name]]) trn_icing_intensity = np.concatenate([trn_icing_intensity, trn_icing_intensity_aug]) trn_icing_times = np.concatenate([trn_icing_times, trn_icing_times_aug]) trn_icing_lons = np.concatenate([trn_icing_lons, trn_icing_lons_aug]) trn_icing_lats = np.concatenate([trn_icing_lats, trn_icing_lats_aug]) trn_icing_alt = np.concatenate([trn_icing_alt, trn_icing_alt_aug]) # do sort ds_indexes = np.argsort(trn_icing_times) for ds_name in params: trn_data_dct[ds_name] = trn_data_dct[ds_name][ds_indexes] trn_icing_intensity = trn_icing_intensity[ds_indexes] trn_icing_times = trn_icing_times[ds_indexes] trn_icing_lons = trn_icing_lons[ds_indexes] trn_icing_lats = trn_icing_lats[ds_indexes] trn_icing_alt = trn_icing_alt[ds_indexes] write_file(trnfile, params, param_types, trn_data_dct, trn_icing_intensity, trn_icing_times, trn_icing_lons, trn_icing_lats, trn_icing_alt) if do_split: tst_data_dct = {} for ds_name in params: tst_data_dct[ds_name] = data_dct[ds_name][tst_idxs,] tst_icing_intensity = icing_intensity[tst_idxs,] tst_icing_times = icing_times[tst_idxs,] tst_icing_lons = icing_lons[tst_idxs,] tst_icing_lats = icing_lats[tst_idxs,] tst_icing_alt = icing_alt[tst_idxs,] # do sort ds_indexes = np.argsort(tst_icing_times) for ds_name in params: tst_data_dct[ds_name] = tst_data_dct[ds_name][ds_indexes] tst_icing_intensity = tst_icing_intensity[ds_indexes] tst_icing_times = tst_icing_times[ds_indexes] tst_icing_lons = tst_icing_lons[ds_indexes] tst_icing_lats = tst_icing_lats[ds_indexes] tst_icing_alt = tst_icing_alt[ds_indexes] write_file(tstfile, params, param_types, tst_data_dct, tst_icing_intensity, tst_icing_times, tst_icing_lons, tst_icing_lats, tst_icing_alt) vld_data_dct = {} for ds_name in params: vld_data_dct[ds_name] = data_dct[ds_name][vld_idxs,] vld_icing_intensity = icing_intensity[vld_idxs,] vld_icing_times = icing_times[vld_idxs,] vld_icing_lons = icing_lons[vld_idxs,] vld_icing_lats = icing_lats[vld_idxs,] vld_icing_alt = icing_alt[vld_idxs,] # do sort ds_indexes = np.argsort(vld_icing_times) for ds_name in params: vld_data_dct[ds_name] = vld_data_dct[ds_name][ds_indexes] vld_icing_intensity = vld_icing_intensity[ds_indexes] vld_icing_times = vld_icing_times[ds_indexes] vld_icing_lons = vld_icing_lons[ds_indexes] vld_icing_lats = vld_icing_lats[ds_indexes] vld_icing_alt = vld_icing_alt[ds_indexes] write_file(vldfile, params, param_types, vld_data_dct, vld_icing_intensity, vld_icing_times, vld_icing_lons, vld_icing_lats, vld_icing_alt) # --- close files for h5f in h5_s_icing: h5f.close() for h5f in h5_s_no_icing: h5f.close() def write_file(outfile, params, param_types, data_dct, icing_intensity, icing_times, icing_lons, icing_lats, icing_alt): h5f_expl = h5py.File(a_clvr_file, 'r') h5f_out = h5py.File(outfile, 'w') for idx, ds_name in enumerate(params): dt = param_types[idx] data = data_dct[ds_name] h5f_out.create_dataset(ds_name, data=data, dtype=dt) icing_int_ds = h5f_out.create_dataset('icing_intensity', data=icing_intensity, dtype='i4') icing_int_ds.attrs.create('long_name', data='From PIREP. -1:No Icing, 1:Trace, 2:Light, 3:Light Moderate, 4:Moderate, 5:Moderate Severe, 6:Severe') time_ds = h5f_out.create_dataset('time', data=icing_times, dtype='f4') time_ds.attrs.create('units', data='seconds since 1970-1-1 00:00:00') time_ds.attrs.create('long_name', data='PIREP time') lon_ds = h5f_out.create_dataset('longitude', data=icing_lons, dtype='f4') lon_ds.attrs.create('units', data='degrees_east') lon_ds.attrs.create('long_name', data='PIREP longitude') lat_ds = h5f_out.create_dataset('latitude', data=icing_lats, dtype='f4') lat_ds.attrs.create('units', data='degrees_north') lat_ds.attrs.create('long_name', data='PIREP latitude') alt_ds = h5f_out.create_dataset('flight_altitude', data=icing_alt, dtype='f4') alt_ds.attrs.create('units', data='meter') alt_ds.attrs.create('long_name', data='PIREP altitude') # copy relevant attributes for ds_name in params: h5f_ds = h5f_out[ds_name] h5f_ds.attrs.create('standard_name', data=h5f_expl[ds_name].attrs.get('standard_name')) h5f_ds.attrs.create('long_name', data=h5f_expl[ds_name].attrs.get('long_name')) h5f_ds.attrs.create('units', data=h5f_expl[ds_name].attrs.get('units')) attr = h5f_expl[ds_name].attrs.get('actual_range') if attr is not None: h5f_ds.attrs.create('actual_range', data=attr) attr = h5f_expl[ds_name].attrs.get('flag_values') if attr is not None: h5f_ds.attrs.create('flag_values', data=attr) # --- close files h5f_out.close() h5f_expl.close() def run_mean_std(check_cloudy=False): ds_list = ['cld_height_acha', 'cld_geo_thick', 'cld_press_acha', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_opd_acha', 'cld_reff_acha', 'cld_reff_dcomp', 'cld_reff_dcomp_1', 'cld_reff_dcomp_2', 'cld_reff_dcomp_3', 'cld_opd_dcomp', 'cld_opd_dcomp_1', 'cld_opd_dcomp_2', 'cld_opd_dcomp_3', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp', 'cld_emiss_acha', 'conv_cloud_fraction'] # ds_list = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', # 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', # 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] mean_std_dct = {} ice_flist = [f for f in glob.glob('/data/Personal/rink/icing/icing_2*.h5')] no_ice_flist = [f for f in glob.glob('/data/Personal/rink/icing/no_icing_2*.h5')] ice_h5f_lst = [h5py.File(f, 'r') for f in ice_flist] no_ice_h5f_lst = [h5py.File(f, 'r') for f in no_ice_flist] if check_cloudy: cld_msk_i = [] cld_msk_ni = [] for idx, ice_h5f in enumerate(ice_h5f_lst): no_ice_h5f = no_ice_h5f_lst[idx] cld_msk_i.append(ice_h5f['cloud_mask'][:,].flatten()) cld_msk_ni.append(no_ice_h5f['cloud_mask'][:,].flatten()) cld_msk_i = np.concatenate(cld_msk_i) cld_msk_ni = np.concatenate(cld_msk_ni) for dname in ds_list: data = [] data_i = [] data_ni = [] for idx, ice_h5f in enumerate(ice_h5f_lst): no_ice_h5f = no_ice_h5f_lst[idx] data.append(ice_h5f[dname][:,].flatten()) data.append(no_ice_h5f[dname][:,].flatten()) data_i.append(ice_h5f[dname][:,].flatten()) data_ni.append(no_ice_h5f[dname][:,].flatten()) data = np.concatenate(data) mean = np.nanmean(data) data -= mean std = np.nanstd(data) data_i = np.concatenate(data_i) if check_cloudy: keep = np.logical_or(cld_msk_i == 2, cld_msk_i == 3) data_i = data_i[keep] mean_i = np.nanmean(data_i) lo_i = np.nanmin(data_i) hi_i = np.nanmax(data_i) data_i -= mean_i std_i = np.nanstd(data_i) cnt_i = np.sum(np.invert(np.isnan(data_i))) data_ni = np.concatenate(data_ni) if check_cloudy: keep = np.logical_or(cld_msk_ni == 2, cld_msk_ni == 3) data_ni = data_ni[keep] mean_ni = np.nanmean(data_ni) lo_ni = np.nanmin(data_ni) hi_ni = np.nanmax(data_ni) data_ni -= mean_ni std_ni = np.nanstd(data_ni) cnt_ni = np.sum(np.invert(np.isnan(data_ni))) no_icing_to_icing_ratio = cnt_ni/cnt_i mean = (mean_i + no_icing_to_icing_ratio*mean_ni)/(no_icing_to_icing_ratio + 1) std = (std_i + no_icing_to_icing_ratio*std_ni)/(no_icing_to_icing_ratio + 1) lo = (lo_i + no_icing_to_icing_ratio*lo_ni)/(no_icing_to_icing_ratio + 1) hi = (hi_i + no_icing_to_icing_ratio*hi_ni)/(no_icing_to_icing_ratio + 1) print(dname,': (', mean, mean_i, mean_ni, ') (', std, std_i, std_ni, ') ratio: ', no_icing_to_icing_ratio) print(dname,': (', lo, lo_i, lo_ni, ') (', hi, hi_i, hi_ni, ') ratio: ', no_icing_to_icing_ratio) mean_std_dct[dname] = (mean, std, lo, hi) [h5f.close() for h5f in ice_h5f_lst] [h5f.close() for h5f in no_ice_h5f_lst] f = open('/home/rink/data/icing_ml/mean_std_lo_hi.pkl', 'wb') pickle.dump(mean_std_dct, f) f.close() return mean_std_dct def run_mean_std_2(check_cloudy=False, no_icing_to_icing_ratio=5, params=train_params_day): params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha', 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp'] mean_std_dct = {} flist = [f for f in glob.glob('/Users/tomrink/data/icing/fov*.h5')] h5f_lst = [h5py.File(f, 'r') for f in flist] if check_cloudy: cld_msk = [] for idx, h5f in enumerate(h5f_lst): cld_msk.append(h5f['cloud_mask'][:,].flatten()) cld_msk = np.concatenate(cld_msk) for dname in params: data = [] for idx, h5f in enumerate(h5f_lst): data.append(h5f[dname][:,].flatten()) data = np.concatenate(data) if check_cloudy: keep = np.logical_or(cld_msk == 2, cld_msk == 3) data = data[keep] mean = np.nanmean(data) data -= mean std = np.nanstd(data) print(dname,': ', mean, std) mean_std_dct[dname] = (mean, std) [h5f.close() for h5f in h5f_lst] f = open('/Users/tomrink/data/icing/fovs_mean_std_day.pkl', 'wb') pickle.dump(mean_std_dct, f) f.close() def run_mean_std_3(train_file_path, check_cloudy=False, params=train_params_day): # params = ['cld_height_acha', 'cld_geo_thick', 'cld_press_acha', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_opd_acha', # 'cld_reff_acha', 'cld_reff_dcomp', 'cld_reff_dcomp_1', 'cld_reff_dcomp_2', 'cld_reff_dcomp_3', # 'cld_opd_dcomp', 'cld_opd_dcomp_1', 'cld_opd_dcomp_2', 'cld_opd_dcomp_3', 'cld_cwp_dcomp', 'iwc_dcomp', # 'lwc_dcomp', 'cld_emiss_acha', 'conv_cloud_fraction'] #check_cloudy = True params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] mean_std_lo_hi_dct = {} h5f = h5py.File(train_file_path, 'r') if check_cloudy: cld_msk = h5f['cloud_mask'][:].flatten() for dname in params: data = h5f[dname][:,].flatten() if check_cloudy: keep = np.logical_or(cld_msk == 2, cld_msk == 3) data = data[keep] lo = np.nanmin(data) hi = np.nanmax(data) mean = np.nanmean(data) data -= mean std = np.nanstd(data) print(dname,': ', mean, std, lo, hi) mean_std_lo_hi_dct[dname] = (mean, std, lo, hi) h5f.close() f = open('/Users/tomrink/data/icing/mean_std_lo_hi_test.pkl', 'wb') pickle.dump(mean_std_lo_hi_dct, f) f.close() # Special VIIRS date/times ----------------------------------------------------------- # time_ranges = [[get_timestamp('2019-03-12_00:00'), get_timestamp('2019-03-15_23:59')], # [get_timestamp('2019-03-20_00:00'), get_timestamp('2019-03-26_23:59')], # [get_timestamp('2019-03-29_00:00'), get_timestamp('2019-03-29_23:59')], # [get_timestamp('2019-04-17_00:00'), get_timestamp('2019-04-17_23:59')], # [get_timestamp('2019-04-20_00:00'), get_timestamp('2019-04-20_23:59')], # [get_timestamp('2019-04-23_00:00'), get_timestamp('2019-04-23_23:59')], # [get_timestamp('2019-04-27_00:00'), get_timestamp('2019-04-27_23:59')], # [get_timestamp('2019-04-29_00:00'), get_timestamp('2019-04-29_23:59')], # [get_timestamp('2019-05-09_00:00'), get_timestamp('2019-05-09_23:59')], # [get_timestamp('2019-05-12_00:00'), get_timestamp('2019-05-12_23:59')], # [get_timestamp('2019-05-14_00:00'), get_timestamp('2019-05-14_23:59')], # [get_timestamp('2019-05-19_00:00'), get_timestamp('2019-05-19_23:59')], # [get_timestamp('2019-06-13_00:00'), get_timestamp('2019-06-13_23:59')], # [get_timestamp('2019-07-22_00:00'), get_timestamp('2019-07-22_23:59')], # [get_timestamp('2019-07-24_00:00'), get_timestamp('2019-07-24_29:59')], # [get_timestamp('2019-08-20_00:00'), get_timestamp('2019-08-20_23:59')], # [get_timestamp('2019-09-09_00:00'), get_timestamp('2019-09-09_23:59')], # [get_timestamp('2019-09-09_00:00'), get_timestamp('2019-09-11_23:59')]] def split_data(times): time_idxs = np.arange(times.shape[0]) time_ranges = [[get_timestamp('2018-01-01_00:00'), get_timestamp('2018-01-07_23:59')], [get_timestamp('2018-03-01_00:00'), get_timestamp('2018-03-07_23:59')], [get_timestamp('2018-05-01_00:00'), get_timestamp('2018-05-07_23:59')], [get_timestamp('2018-07-01_00:00'), get_timestamp('2018-07-07_23:59')], [get_timestamp('2018-09-01_00:00'), get_timestamp('2018-09-07_23:59')], [get_timestamp('2018-11-01_00:00'), get_timestamp('2018-11-07_23:59')], [get_timestamp('2019-01-01_00:00'), get_timestamp('2019-01-07_23:59')], [get_timestamp('2019-03-01_00:00'), get_timestamp('2019-03-07_23:59')], [get_timestamp('2019-05-01_00:00'), get_timestamp('2019-05-07_23:59')], [get_timestamp('2019-07-01_00:00'), get_timestamp('2019-07-07_23:59')], [get_timestamp('2019-09-01_00:00'), get_timestamp('2019-09-07_23:59')], [get_timestamp('2019-11-01_00:00'), get_timestamp('2019-11-07_23:59')], [get_timestamp('2021-09-24_00:00'), get_timestamp('2021-10-01_23:59')], [get_timestamp('2021-11-01_00:00'), get_timestamp('2021-11-07_23:59')], [get_timestamp('2022-01-01_00:00'), get_timestamp('2022-01-07_23:59')], [get_timestamp('2022-03-01_00:00'), get_timestamp('2022-03-07_23:59')], [get_timestamp('2022-04-01_00:00'), get_timestamp('2022-04-04_23:59')]] # time_ranges_lunar = [[get_timestamp('2018-01-01_00:00'), get_timestamp('2018-01-06_23:59')], # [get_timestamp('2018-03-01_00:00'), get_timestamp('2018-03-06_23:59')], # [get_timestamp('2018-05-01_00:00'), get_timestamp('2018-05-06_23:59')], # [get_timestamp('2018-07-01_00:00'), get_timestamp('2018-07-06_23:59')], # [get_timestamp('2018-09-01_00:00'), get_timestamp('2018-09-06_23:59')], # [get_timestamp('2018-11-01_00:00'), get_timestamp('2018-11-06_23:59')], # [get_timestamp('2019-01-01_00:00'), get_timestamp('2019-01-06_23:59')], # #[get_timestamp('2019-03-01_00:00'), get_timestamp('2019-03-07_23:59')], # [get_timestamp('2019-03-12_00:00'), get_timestamp('2019-03-15_23:59')], # [get_timestamp('2019-03-20_00:00'), get_timestamp('2019-03-26_23:59')], # [get_timestamp('2019-03-29_00:00'), get_timestamp('2019-03-29_23:59')], # [get_timestamp('2019-05-01_00:00'), get_timestamp('2019-05-03_23:59')], # [get_timestamp('2019-05-09_00:00'), get_timestamp('2019-05-09_23:59')], # [get_timestamp('2019-05-12_00:00'), get_timestamp('2019-05-12_23:59')], # [get_timestamp('2019-05-14_00:00'), get_timestamp('2019-05-14_23:59')], # [get_timestamp('2019-05-19_00:00'), get_timestamp('2019-05-19_23:59')], # [get_timestamp('2019-07-01_00:00'), get_timestamp('2019-07-05_23:59')], # [get_timestamp('2019-07-22_00:00'), get_timestamp('2019-07-22_23:59')], # [get_timestamp('2019-07-24_00:00'), get_timestamp('2019-07-24_23:59')], # [get_timestamp('2019-09-01_00:00'), get_timestamp('2019-09-05_23:59')], # [get_timestamp('2019-09-09_00:00'), get_timestamp('2019-09-09_23:59')], # [get_timestamp('2019-09-09_00:00'), get_timestamp('2019-09-11_23:59')], # [get_timestamp('2019-11-01_00:00'), get_timestamp('2019-11-07_23:59')], # [get_timestamp('2021-09-24_00:00'), get_timestamp('2021-10-01_23:59')], # [get_timestamp('2021-11-01_00:00'), get_timestamp('2021-11-07_23:59')], # [get_timestamp('2022-01-01_00:00'), get_timestamp('2022-01-07_23:59')], # [get_timestamp('2022-03-01_00:00'), get_timestamp('2022-03-07_23:59')], # [get_timestamp('2022-04-01_00:00'), get_timestamp('2022-04-04_23:59')]] keep_out = 10800 # 3 hrs vld_time_idxs = [] for t_rng in time_ranges: t_rng[0] -= keep_out t_rng[1] += keep_out tidxs = np.searchsorted(times, t_rng) vld_time_idxs.append(np.arange(tidxs[0], tidxs[1], 1)) vld_time_idxs = np.concatenate(vld_time_idxs, axis=None) # train_time_idxs = time_idxs[np.in1d(time_idxs, vld_time_idxs, invert=True)] time_ranges = [[get_timestamp('2018-02-01_00:00'), get_timestamp('2018-02-04_23:59')], [get_timestamp('2018-04-01_00:00'), get_timestamp('2018-04-04_23:59')], [get_timestamp('2018-06-01_00:00'), get_timestamp('2018-06-04_23:59')], [get_timestamp('2018-08-01_00:00'), get_timestamp('2018-08-04_23:59')], [get_timestamp('2018-10-01_00:00'), get_timestamp('2018-10-04_23:59')], [get_timestamp('2018-12-01_00:00'), get_timestamp('2018-12-04_23:59')], [get_timestamp('2019-02-01_00:00'), get_timestamp('2019-02-04_23:59')], [get_timestamp('2019-04-01_00:00'), get_timestamp('2019-04-04_23:59')], [get_timestamp('2019-06-01_00:00'), get_timestamp('2019-06-04_23:59')], [get_timestamp('2019-08-01_00:00'), get_timestamp('2019-08-04_23:59')], [get_timestamp('2019-10-01_00:00'), get_timestamp('2019-10-04_23:59')], [get_timestamp('2019-12-01_00:00'), get_timestamp('2019-12-04_23:59')], [get_timestamp('2021-10-05_00:00'), get_timestamp('2021-10-10_23:59')], [get_timestamp('2021-12-01_00:00'), get_timestamp('2021-12-04_23:59')], [get_timestamp('2022-02-01_00:00'), get_timestamp('2022-02-04_23:59')], [get_timestamp('2022-03-26_00:00'), get_timestamp('2022-03-30_23:59')], [get_timestamp('2022-04-07_00:00'), get_timestamp('2022-04-10_23:59')]] # time_ranges_lunar = [[get_timestamp('2018-02-01_00:00'), get_timestamp('2018-02-04_23:59')], # [get_timestamp('2018-04-01_00:00'), get_timestamp('2018-04-04_23:59')], # [get_timestamp('2018-06-01_00:00'), get_timestamp('2018-06-04_23:59')], # [get_timestamp('2018-08-01_00:00'), get_timestamp('2018-08-04_23:59')], # [get_timestamp('2018-10-01_00:00'), get_timestamp('2018-10-04_23:59')], # [get_timestamp('2018-12-01_00:00'), get_timestamp('2018-12-04_23:59')], # [get_timestamp('2019-02-01_00:00'), get_timestamp('2019-02-04_23:59')], # #[get_timestamp('2019-04-01_00:00'), get_timestamp('2019-04-04_23:59')], # [get_timestamp('2019-04-17_00:00'), get_timestamp('2019-04-17_23:59')], # [get_timestamp('2019-04-20_00:00'), get_timestamp('2019-04-20_23:59')], # [get_timestamp('2019-04-23_00:00'), get_timestamp('2019-04-23_23:59')], # [get_timestamp('2019-04-27_00:00'), get_timestamp('2019-04-27_23:59')], # [get_timestamp('2019-04-29_00:00'), get_timestamp('2019-04-29_23:59')], # [get_timestamp('2019-06-01_00:00'), get_timestamp('2019-06-03_23:59')], # [get_timestamp('2019-06-13_00:00'), get_timestamp('2019-06-13_23:59')], # [get_timestamp('2019-08-01_00:00'), get_timestamp('2019-08-03_23:59')], # [get_timestamp('2019-08-20_00:00'), get_timestamp('2019-08-20_23:59')], # [get_timestamp('2019-10-01_00:00'), get_timestamp('2019-10-04_23:59')], # [get_timestamp('2019-12-01_00:00'), get_timestamp('2019-12-04_23:59')], # # [get_timestamp('2021-10-05_00:00'), get_timestamp('2021-10-10_23:59')], # [get_timestamp('2021-12-01_00:00'), get_timestamp('2021-12-04_23:59')], # [get_timestamp('2022-02-01_00:00'), get_timestamp('2022-02-04_23:59')], # [get_timestamp('2022-03-26_00:00'), get_timestamp('2022-03-30_23:59')], # [get_timestamp('2022-04-07_00:00'), get_timestamp('2022-04-10_23:59')]] tst_time_idxs = [] for t_rng in time_ranges: t_rng[0] -= keep_out t_rng[1] += keep_out tidxs = np.searchsorted(times, t_rng) tst_time_idxs.append(np.arange(tidxs[0], tidxs[1], 1)) tst_time_idxs = np.concatenate(tst_time_idxs, axis=None) vld_tst_time_idxs = np.concatenate([vld_time_idxs, tst_time_idxs]) vld_tst_time_idxs = np.sort(vld_tst_time_idxs) train_time_idxs = time_idxs[np.in1d(time_idxs, vld_tst_time_idxs, invert=True)] return train_time_idxs, vld_time_idxs, tst_time_idxs def normalize(data, param, mean_std_dict, add_noise=False, noise_scale=1.0, seed=None): if mean_std_dict.get(param) is None: return data shape = data.shape data = data.flatten() mean, std, lo, hi = mean_std_dict.get(param) data -= mean data /= std if add_noise: if seed is not None: np.random.seed(seed) rnd = np.random.normal(loc=0, scale=noise_scale, size=data.size) data += rnd not_valid = np.isnan(data) data[not_valid] = 0 data = np.reshape(data, shape) return data lon_space = np.linspace(-180, 180, 721) lat_space = np.linspace(-90, 90, 361) def spatial_filter(icing_dict): keys = icing_dict.keys() grd_x_hi = lon_space.shape[0] - 1 grd_y_hi = lat_space.shape[0] - 1 grd_bins = np.full((lat_space.shape[0], lon_space.shape[0]), 0) grd_bins_keys = [[[] for i in range(lon_space.shape[0])] for j in range(lat_space.shape[0])] for key in keys: rpts = icing_dict.get(key) for tup in rpts: lat = tup[0] lon = tup[1] lon_idx = np.searchsorted(lon_space, lon) lat_idx = np.searchsorted(lat_space, lat) if lon_idx < 0 or lon_idx > grd_x_hi: continue if lat_idx < 0 or lat_idx > grd_y_hi: continue grd_bins[lat_idx, lon_idx] += 1 grd_bins_keys[lat_idx][lon_idx].append(key) return grd_bins, grd_bins_keys def remove_common(boeing_dct, pirep_dct, threshold=3000): boeing_times = list(boeing_dct.keys()) pirep_times = np.array(list(pirep_dct.keys())) pt_s = [] bt_s = [] bi_s = [] for k, bt in enumerate(boeing_times): idx_s, v_s = get_indexes_within_threshold(pirep_times, bt, threshold=threshold) if len(idx_s) > 0: bt_s.append(bt) bi_s.append(k) pt_s.append(v_s[0]) boeing_times = np.array(boeing_times) sub_pirep_dct = {} sub_boeing_dct = {} for key in pt_s: sub_pirep_dct[key] = pirep_dct.get(key) for key in bt_s: sub_boeing_dct[key] = boeing_dct.get(key) grd_bins, _ = spatial_filter(sub_pirep_dct) grd_bins_boeing, key_bins = spatial_filter(sub_boeing_dct) grd_bins = np.where(grd_bins > 0, 1, grd_bins) grd_bins_boeing = np.where(grd_bins_boeing > 0, 1, grd_bins_boeing) ovrlp_grd_bins = grd_bins + grd_bins_boeing ovlp_keys = [] for j in range(lat_space.shape[0]): for i in range(lon_space.shape[0]): if ovrlp_grd_bins[j, i] == 2: keys = key_bins[j][i] nkeys = len(keys) for k in range(nkeys): ovlp_keys.append(keys[k]) set_a = set(ovlp_keys) set_b = set(boeing_times) set_b.difference_update(set_a) no_ovlp_dct = {} for key in set_b: no_ovlp_dct[key] = boeing_dct.get(key) return no_ovlp_dct # dt_str_0: start datetime string in format YYYY-MM-DD_HH:MM (default) # dt_str_1: end datetime string in format YYYY-MM-DD_HH:MM (default) # format_code: Python Datetime format code, default: '%Y-%m-%d_%H:%M' # return a flatten list of icing reports def time_filter(icing_dct, dt_str_0=None, dt_str_1=None, format_code='%Y-%m-%d_%H:%M'): ts_0 = 0 if dt_str_0 is not None: dto_0 = datetime.datetime.strptime(dt_str_0, format_code).replace(tzinfo=timezone.utc) ts_0 = dto_0.timestamp() ts_1 = np.finfo(np.float64).max if dt_str_1 is not None: dto_1 = datetime.datetime.strptime(dt_str_1, format_code).replace(tzinfo=timezone.utc) ts_1 = dto_1.timestamp() keep_reports = [] keep_times = [] keep_lons = [] keep_lats = [] for ts in list(icing_dct.keys()): if ts_0 <= ts < ts_1: rpts = icing_dct[ts] for idx, tup in enumerate(rpts): keep_reports.append(tup) keep_times.append(ts) keep_lats.append(tup[0]) keep_lons.append(tup[1]) return keep_times, keep_lons, keep_lats, keep_reports # dt_str_0: start datetime string in format YYYY-MM-DD_HH:MM (default) # dt_str_1: end datetime string in format YYYY-MM-DD_HH:MM (default) # format_code: Python Datetime format code, default: '%Y-%m-%d_%H:%M' # return a flatten list of icing reports def time_filter_2(times, dt_str_0=None, dt_str_1=None, format_code='%Y-%m-%d_%H:%M'): ts_0 = 0 if dt_str_0 is not None: dto_0 = datetime.datetime.strptime(dt_str_0, format_code).replace(tzinfo=timezone.utc) ts_0 = dto_0.timestamp() ts_1 = np.finfo(np.float64).max if dt_str_1 is not None: dto_1 = datetime.datetime.strptime(dt_str_1, format_code).replace(tzinfo=timezone.utc) ts_1 = dto_1.timestamp() keep_idxs = [] keep_times = [] for idx, ts in enumerate(times): if ts_0 <= ts < ts_1: keep_times.append(ts) keep_idxs.append(idx) return keep_times, keep_idxs def time_filter_3(icing_dct, ts_0, ts_1, alt_lo=None, alt_hi=None): keep_reports = [] keep_times = [] keep_lons = [] keep_lats = [] for ts in list(icing_dct.keys()): if ts_0 <= ts < ts_1: rpts = icing_dct[ts] for idx, tup in enumerate(rpts): falt = tup[2] if alt_lo is not None and (alt_lo < falt <= alt_hi): keep_reports.append(tup) keep_times.append(ts) keep_lats.append(tup[0]) keep_lons.append(tup[1]) return keep_times, keep_lons, keep_lats, keep_reports def analyze_moon_phase(icing_dict): ts = api.load.timescale() eph = api.load('de421.bsp') last_date = None moon_phase = None cnt = 0 for key in list(icing_dict.keys()): dt_obj, dt_tup = get_time_tuple_utc(key) date = datetime.date(dt_tup.tm_year, dt_tup.tm_mon, dt_tup.tm_mday) if last_date != date: t = ts.utc(dt_tup.tm_year, dt_tup.tm_mon, dt_tup.tm_mday) moon_phase = almanac.moon_phase(eph, t) if 30 < moon_phase.degrees < 330: cnt += 1 last_date = date else: if 30 < moon_phase.degrees < 330: cnt += 1 print(len(icing_dict), cnt) def tiles_info(filename): h5f = h5py.File(filename, 'r') iint = h5f['icing_intensity'][:] print('No Icing: ', np.sum(iint == -1)) print('Icing: ', np.sum(iint > 0)) print('Icing 1: ', np.sum(iint == 1)) print('Icing 2: ', np.sum(iint == 2)) print('Icing 3: ', np.sum(iint == 3)) print('Icing 4: ', np.sum(iint == 4)) print('Icing 5: ', np.sum(iint == 5)) print('Icing 6: ', np.sum(iint == 6)) def analyze(preds_file, labels, prob_avg, test_file): h5f = h5py.File(test_file, 'r') nda = h5f['flight_altitude'][:] iint = h5f['icing_intensity'][:] cld_hgt = h5f['cld_height_acha'][:] cld_dz = h5f['cld_geo_thick'][:] cld_tmp = h5f['cld_temp_acha'][:] print('report altitude (m): ', np.histogram(nda, bins=12)) iint = np.where(iint == -1, 0, iint) iint = np.where(iint != 0, 1, iint) nda[np.logical_and(nda >= 0, nda < 2000)] = 0 nda[np.logical_and(nda >= 2000, nda < 4000)] = 1 nda[np.logical_and(nda >= 4000, nda < 6000)] = 2 nda[np.logical_and(nda >= 6000, nda < 8000)] = 3 nda[np.logical_and(nda >= 8000, nda < 15000)] = 4 print(np.sum(nda == 0), np.sum(nda == 1), np.sum(nda == 2), np.sum(nda == 3), np.sum(nda == 4)) print('No icing: ', np.histogram(nda[iint == 0], bins=5)[0]) print('---------------------------') print('Icing: ', np.histogram(nda[iint == 1], bins=5)[0]) print('---------------------------') print('No Icing(Negative): mean cld_dz, cld_hgt') print('Icing(Positive): ", "') print('level 0: ') print(np.nanmean(cld_dz[(nda == 0) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 0) & (iint == 0)]), np.nanmean(cld_tmp[(nda == 0) & (iint == 0)])) print(np.nanmean(cld_dz[(nda == 0) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 0) & (iint == 1)]), np.nanmean(cld_tmp[(nda == 0) & (iint == 1)])) print('------------') print('level 1: ') print(np.nanmean(cld_dz[(nda == 1) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 1) & (iint == 0)]), np.nanmean(cld_tmp[(nda == 1) & (iint == 0)])) print(np.nanmean(cld_dz[(nda == 1) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 1) & (iint == 1)]), np.nanmean(cld_tmp[(nda == 1) & (iint == 1)])) print('------------') print('level 2: ') print(np.nanmean(cld_dz[(nda == 2) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 2) & (iint == 0)]), np.nanmean(cld_tmp[(nda == 2) & (iint == 0)])) print(np.nanmean(cld_dz[(nda == 2) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 2) & (iint == 1)]), np.nanmean(cld_tmp[(nda == 2) & (iint == 1)])) print('------------') print('level 3: ') print(np.nanmean(cld_dz[(nda == 3) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 3) & (iint == 0)]), np.nanmean(cld_tmp[(nda == 3) & (iint == 0)])) print(np.nanmean(cld_dz[(nda == 3) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 3) & (iint == 1)]), np.nanmean(cld_tmp[(nda == 3) & (iint == 1)])) print('------------') print('level 4: ') print(np.nanmean(cld_dz[(nda == 4) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 4) & (iint == 0)]), np.nanmean(cld_tmp[(nda == 4) & (iint == 0)])) print(np.nanmean(cld_dz[(nda == 4) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 4) & (iint == 1)]), np.nanmean(cld_tmp[(nda == 4) & (iint == 1)])) print('----------------------------------------------------------') print('----------------------------------------------------------') if preds_file is not None: labels, prob_avg, cm_avg = pickle.load(open(preds_file, 'rb')) preds = np.where(prob_avg > 0.5, 1, 0) true_ice = (labels == 1) & (preds == 1) false_ice = (labels == 0) & (preds == 1) true_no_ice = (labels == 0) & (preds == 0) false_no_ice = (labels == 1) & (preds == 0) print('Total (Positive/Icing Prediction: ') print('True icing: ', np.histogram(nda[true_ice], bins=5)[0]) print('-------------------------') print('False no icing (False Negative/Miss): ', np.histogram(nda[false_no_ice], bins=5)[0]) print('By flight level:') print('No Icing(Negative): mean cld_dz, cld_hgt') print('Icing(Positive): ", "') print('level 0: ') print(np.nanmean(cld_dz[(nda == 0) & false_no_ice]), np.nanmean(cld_hgt[(nda == 0) & false_no_ice]), np.nanmean(cld_tmp[(nda == 0) & false_no_ice])) print(np.nanmean(cld_dz[(nda == 0) & true_ice]), np.nanmean(cld_hgt[(nda == 0) & true_ice]), np.nanmean(cld_tmp[(nda == 0) & true_ice])) print('------------') print('level 1: ') print(np.nanmean(cld_dz[(nda == 1) & false_no_ice]), np.nanmean(cld_hgt[(nda == 1) & false_no_ice]), np.nanmean(cld_tmp[(nda == 1) & false_no_ice])) print(np.nanmean(cld_dz[(nda == 1) & true_ice]), np.nanmean(cld_hgt[(nda == 1) & true_ice]), np.nanmean(cld_tmp[(nda == 1) & true_ice])) print('------------') print('level 2: ') print(np.nanmean(cld_dz[(nda == 2) & false_no_ice]), np.nanmean(cld_hgt[(nda == 2) & false_no_ice]), np.nanmean(cld_tmp[(nda == 2) & false_no_ice])) print(np.nanmean(cld_dz[(nda == 2) & true_ice]), np.nanmean(cld_hgt[(nda == 2) & true_ice]), np.nanmean(cld_tmp[(nda == 2) & true_ice])) print('------------') print('level 3: ') print(np.nanmean(cld_dz[(nda == 3) & false_no_ice]), np.nanmean(cld_hgt[(nda == 3) & false_no_ice]), np.nanmean(cld_tmp[(nda == 3) & false_no_ice])) print(np.nanmean(cld_dz[(nda == 3) & true_ice]), np.nanmean(cld_hgt[(nda == 3) & true_ice]), np.nanmean(cld_tmp[(nda == 3) & true_ice])) print('------------') print('level 4: ') print(np.nanmean(cld_dz[(nda == 4) & false_no_ice]), np.nanmean(cld_hgt[(nda == 4) & false_no_ice]), np.nanmean(cld_tmp[(nda == 4) & false_no_ice])) print(np.nanmean(cld_dz[(nda == 4) & true_ice]), np.nanmean(cld_hgt[(nda == 4) & true_ice]), np.nanmean(cld_tmp[(nda == 4) & true_ice])) print('---------------------------------------------------') print('---------------------------------------------------') print('Total (Negative/No Icing Prediction: ') print('True no icing: ', np.histogram(nda[true_no_ice], bins=5)[0]) print('-------------------------') print('* False icing (False Positive/False Alarm) *: ', np.histogram(nda[false_ice], bins=5)[0]) print('-------------------------') print('level 0: ') print(np.nanmean(cld_dz[(nda == 0) & false_ice]), np.nanmean(cld_hgt[(nda == 0) & false_ice]), np.nanmean(cld_tmp[(nda == 0) & false_ice])) print(np.nanmean(cld_dz[(nda == 0) & true_no_ice]), np.nanmean(cld_hgt[(nda == 0) & true_no_ice]), np.nanmean(cld_tmp[(nda == 0) & true_no_ice])) print('------------') print('level 1: ') print(np.nanmean(cld_dz[(nda == 1) & false_ice]), np.nanmean(cld_hgt[(nda == 1) & false_ice]), np.nanmean(cld_tmp[(nda == 1) & false_ice])) print(np.nanmean(cld_dz[(nda == 1) & true_no_ice]), np.nanmean(cld_hgt[(nda == 1) & true_no_ice]), np.nanmean(cld_tmp[(nda == 1) & true_no_ice])) print('------------') print('level 2: ') print(np.nanmean(cld_dz[(nda == 2) & false_ice]), np.nanmean(cld_hgt[(nda == 2) & false_ice]), np.nanmean(cld_tmp[(nda == 2) & false_ice])) print(np.nanmean(cld_dz[(nda == 2) & true_no_ice]), np.nanmean(cld_hgt[(nda == 2) & true_no_ice]), np.nanmean(cld_tmp[(nda == 2) & true_no_ice])) print('------------') print('level 3: ') print(np.nanmean(cld_dz[(nda == 3) & false_ice]), np.nanmean(cld_hgt[(nda == 3) & false_ice]), np.nanmean(cld_tmp[(nda == 3) & false_ice])) print(np.nanmean(cld_dz[(nda == 3) & true_no_ice]), np.nanmean(cld_hgt[(nda == 3) & true_no_ice]), np.nanmean(cld_tmp[(nda == 3) & true_no_ice])) print('------------') print('level 4: ') print(np.nanmean(cld_dz[(nda == 4) & false_ice]), np.nanmean(cld_hgt[(nda == 4) & false_ice]), np.nanmean(cld_tmp[(nda == 4) & false_ice])) print(np.nanmean(cld_dz[(nda == 4) & true_no_ice]), np.nanmean(cld_hgt[(nda == 4) & true_no_ice]), np.nanmean(cld_tmp[(nda == 4) & true_no_ice])) def get_training_parameters(day_night='DAY', l1b_andor_l2='both'): if day_night == 'DAY': train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction', 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] else: train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction', 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_acha', 'cld_opd_acha'] train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom'] if l1b_andor_l2 == 'both': train_params = train_params_l1b + train_params_l2 elif l1b_andor_l2 == 'l1b': train_params = train_params_l1b elif l1b_andor_l2 == 'l2': train_params = train_params_l2 return train_params flt_level_ranges = {k: None for k in range(5)} flt_level_ranges[0] = [0.0, 2000.0] flt_level_ranges[1] = [2000.0, 4000.0] flt_level_ranges[2] = [4000.0, 6000.0] flt_level_ranges[3] = [6000.0, 8000.0] flt_level_ranges[4] = [8000.0, 15000.0]