import numpy as np
import deeplearning.icing_fcn as icing_fcn
import deeplearning.icing_cnn as icing_cnn
from icing.pirep_goes import setup, time_filter_3
from util.util import get_time_tuple_utc, is_day, check_oblique, homedir, write_icing_file_nc4,\
    make_for_full_domain_predict, prepare_evaluate
from util.plot import make_icing_image
from util.geos_nav import get_navigation, get_lon_lat_2d_mesh
from util.setup import model_path_day, model_path_night
from aeolus.datasource import CLAVRx, CLAVRx_VIIRS, GOESL1B, CLAVRx_H08
import h5py
import datetime


def get_training_parameters(day_night='DAY', l1b_andor_l2='both'):
    if day_night == 'DAY':
        train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
                           'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']

        train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
                            'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
                            'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
    else:
        train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
                           'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_acha', 'cld_opd_acha']

        train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
                            'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom']

    if l1b_andor_l2 == 'both':
        train_params = train_params_l1b + train_params_l2
    elif l1b_andor_l2 == 'l1b':
        train_params = train_params_l1b
    elif l1b_andor_l2 == 'l2':
        train_params = train_params_l2

    return train_params


flt_level_ranges = {k: None for k in range(5)}
flt_level_ranges[0] = [0.0, 2000.0]
flt_level_ranges[1] = [2000.0, 4000.0]
flt_level_ranges[2] = [4000.0, 6000.0]
flt_level_ranges[3] = [6000.0, 8000.0]
flt_level_ranges[4] = [8000.0, 15000.0]


def run_make_images(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', ckpt_dir_s_path='/Users/tomrink/tf_model/', prob_thresh=0.5, satellite='GOES16', domain='CONUS',
                    extent=[-105, -70, 15, 50],
                    pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv',
                    obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None,
                    use_flight_altitude=False, day_night='DAY', l1b_andor_l2='l2'):

    if pirep_file is not None:
        ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file)

    if satellite == 'H08':
        clvrx_ds = CLAVRx_H08(clvrx_dir)
    else:
        clvrx_ds = CLAVRx(clvrx_dir)
    clvrx_files = clvrx_ds.flist

    alt_lo, alt_hi = 0.0, 15000.0
    if flight_level is not None:
        alt_lo, alt_hi = flt_level_ranges[flight_level]

    train_params = get_training_parameters(day_night=day_night, l1b_andor_l2=l1b_andor_l2)

    for fidx, fname in enumerate(clvrx_files):
        h5f = h5py.File(fname, 'r')
        dto = clvrx_ds.get_datetime(fname)
        ts = dto.timestamp()
        clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')

        data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain)
        num_elems, num_lines = len(cc), len(ll)

        dto, _ = get_time_tuple_utc(ts)
        dto_0 = dto - datetime.timedelta(minutes=30)
        dto_1 = dto + datetime.timedelta(minutes=30)
        ts_0 = dto_0.timestamp()
        ts_1 = dto_1.timestamp()

        if pirep_file is not None:
            _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi)
        elif obs_times is not None:
            keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1)
            keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False)
            keep_lons = obs_lons[keep]
            keep_lats = obs_lats[keep]
        else:
            keep_lons = None
            keep_lats = None

        ice_lons, ice_lats, preds_2d = icing_cnn.run_evaluate_static_avg(data_dct, ll, cc, ckpt_dir_s_path=ckpt_dir_s_path,
                                                                         flight_level=flight_level, prob_thresh=prob_thresh,
                                                                         satellite=satellite, domain=domain,
                                                                         use_flight_altitude=use_flight_altitude)

        make_icing_image(h5f, None, ice_lons, ice_lats, clvrx_str_time, satellite, domain,
                         ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent)

        # preds_2d_dct, probs_2d_dct = run_evaluate_static(data_dct, num_lines, num_elems, day_night=day_night,
        #                                                  ckpt_dir_s_path=ckpt_dir_s_path, prob_thresh=prob_thresh,
        #                                                  flight_levels=[0],
        #                                                  use_flight_altitude=use_flight_altitude)
        #
        # make_icing_image(None, probs_2d_dct[0], None, None, clvrx_str_time, satellite, domain,
        #                  ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent)

        h5f.close()
        print('Done: ', clvrx_str_time)


def run_icing_predict(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir,
                      day_model_path=model_path_day, night_model_path=model_path_night,
                      prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO',
                      l1b_andor_l2='both', use_flight_altitude=True, res_fac=1, use_nan=False, model_type='CNN'):
    if model_type == 'CNN':
        model_module = icing_cnn
    elif model_type == 'FCN':
        model_module = icing_fcn

    if use_flight_altitude is True:
        flight_levels = [0, 1, 2, 3, 4]
    else:
        flight_levels = [0]

    day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2)
    nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2)

    if day_night == 'AUTO':
        train_params = list(set(day_train_params + nght_train_params))
    elif day_night == 'DAY':
        train_params = day_train_params
    elif day_night == 'NIGHT':
        train_params = nght_train_params

    if satellite == 'H08':
        clvrx_ds = CLAVRx_H08(clvrx_dir)
    else:
        clvrx_ds = CLAVRx(clvrx_dir)
    clvrx_files = clvrx_ds.flist

    for fidx, fname in enumerate(clvrx_files):
        h5f = h5py.File(fname, 'r')
        dto = clvrx_ds.get_datetime(fname)
        ts = dto.timestamp()
        clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')

        data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain, res_fac=res_fac)

        if fidx == 0:
            num_elems = len(cc)
            num_lines = len(ll)
            nav = get_navigation(satellite, domain)
            lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc, offset=int(8 / res_fac))

        ancil_data_dct, _, _ = make_for_full_domain_predict(h5f, name_list=
                            ['solar_zenith_angle', 'sensor_zenith_angle', 'cld_height_acha', 'cld_geo_thick'],
                            satellite=satellite, domain=domain, res_fac=res_fac)

        satzen = ancil_data_dct['sensor_zenith_angle']
        solzen = ancil_data_dct['solar_zenith_angle']
        day_idxs = []
        nght_idxs = []
        for j in range(num_lines):
            for i in range(num_elems):
                k = i + j*num_elems
                if not check_oblique(satzen[k]):
                    continue
                if is_day(solzen[k]):
                    day_idxs.append(k)
                else:
                    nght_idxs.append(k)

        num_tiles = num_lines * num_elems
        num_day_tiles = len(day_idxs)
        num_nght_tiles = len(nght_idxs)

        # initialize output arrays
        probs_2d_dct = {flvl: None for flvl in flight_levels}
        preds_2d_dct = {flvl: None for flvl in flight_levels}
        for flvl in flight_levels:
            fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8)
            fd_preds[:] = -1
            fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32)
            fd_probs[:] = -1.0
            preds_2d_dct[flvl] = fd_preds
            probs_2d_dct[flvl] = fd_probs

        if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0:

            day_data_dct = {name: [] for name in day_train_params}
            for name in day_train_params:
                for k in day_idxs:
                    day_data_dct[name].append(data_dct[name][k])
            day_grd_dct = {name: None for name in day_train_params}
            for ds_name in day_train_params:
                day_grd_dct[ds_name] = np.stack(day_data_dct[ds_name])

            preds_day_dct, probs_day_dct = model_module.run_evaluate_static(day_grd_dct, num_day_tiles, day_model_path,
                                                                            day_night='DAY', l1b_or_l2=l1b_andor_l2,
                                                                            prob_thresh=prob_thresh,
                                                                            use_flight_altitude=use_flight_altitude,
                                                                            flight_levels=flight_levels)
            day_idxs = np.array(day_idxs)
            for flvl in flight_levels:
                day_preds = preds_day_dct[flvl]
                day_probs = probs_day_dct[flvl]
                fd_preds = preds_2d_dct[flvl]
                fd_probs = probs_2d_dct[flvl]
                fd_preds[day_idxs] = day_preds[:]
                fd_probs[day_idxs] = day_probs[:]

        if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0:

            nght_data_dct = {name: [] for name in nght_train_params}
            for name in nght_train_params:
                for k in nght_idxs:
                    nght_data_dct[name].append(data_dct[name][k])
            nght_grd_dct = {name: None for name in nght_train_params}
            for ds_name in nght_train_params:
                nght_grd_dct[ds_name] = np.stack(nght_data_dct[ds_name])

            preds_nght_dct, probs_nght_dct = model_module.run_evaluate_static(nght_grd_dct, num_nght_tiles, night_model_path,
                                                                              day_night='NIGHT', l1b_or_l2=l1b_andor_l2,
                                                                              prob_thresh=prob_thresh,
                                                                              use_flight_altitude=use_flight_altitude,
                                                                              flight_levels=flight_levels)
            nght_idxs = np.array(nght_idxs)
            for flvl in flight_levels:
                nght_preds = preds_nght_dct[flvl]
                nght_probs = probs_nght_dct[flvl]
                fd_preds = preds_2d_dct[flvl]
                fd_probs = probs_2d_dct[flvl]
                fd_preds[nght_idxs] = nght_preds[:]
                fd_probs[nght_idxs] = nght_probs[:]

        for flvl in flight_levels:
            fd_preds = preds_2d_dct[flvl]
            fd_probs = probs_2d_dct[flvl]
            preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems))
            probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems))

        write_icing_file_nc4(clvrx_str_time, output_dir, preds_2d_dct, probs_2d_dct,
                             x_rad, y_rad, lons_2d, lats_2d, cc, ll,
                             satellite=satellite, domain=domain, use_nan=use_nan, prob_thresh=prob_thresh)

        print('Done: ', clvrx_str_time)
        h5f.close()


def run_icing_predict_fcn(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir,
                          day_model_path=model_path_day, night_model_path=model_path_night,
                          prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO',
                          l1b_andor_l2='both', use_flight_altitude=False, res_fac=1, use_nan=False):
    if use_flight_altitude is True:
        flight_levels = [0, 1, 2, 3, 4]
    else:
        flight_levels = [0]

    day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2)
    nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2)

    if day_night == 'AUTO':
        train_params = list(set(day_train_params + nght_train_params))
    elif day_night == 'DAY':
        train_params = day_train_params
    elif day_night == 'NIGHT':
        train_params = nght_train_params

    if satellite == 'H08':
        clvrx_ds = CLAVRx_H08(clvrx_dir)
    else:
        clvrx_ds = CLAVRx(clvrx_dir)
    clvrx_files = clvrx_ds.flist

    for fidx, fname in enumerate(clvrx_files):
        h5f = h5py.File(fname, 'r')
        dto = clvrx_ds.get_datetime(fname)
        ts = dto.timestamp()
        clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')

        data_dct, solzen, satzen, ll, cc = prepare_evaluate(h5f, name_list=train_params, satellite=satellite, domain=domain, offset=8)
        num_elems = len(cc)
        num_lines = len(ll)

        if fidx == 0:
            nav = get_navigation(satellite, domain)
            lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc)

        day_idxs = solzen < 80.0
        num_day_tiles = np.sum(day_idxs)

        nght_idxs = solzen > 100.0
        num_nght_tiles = np.sum(nght_idxs)

        # initialize output arrays
        probs_2d_dct = {flvl: None for flvl in flight_levels}
        preds_2d_dct = {flvl: None for flvl in flight_levels}
        for flvl in flight_levels:
            fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8)
            fd_preds[:] = -1
            fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32)
            fd_probs[:] = -1.0
            preds_2d_dct[flvl] = fd_preds
            probs_2d_dct[flvl] = fd_probs

        if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0:

            preds_day_dct, probs_day_dct = icing_fcn.run_evaluate_static(data_dct, 1, day_model_path,
                                                                         day_night='DAY', l1b_or_l2=l1b_andor_l2,
                                                                         prob_thresh=prob_thresh,
                                                                         use_flight_altitude=use_flight_altitude,
                                                                         flight_levels=flight_levels)
            for flvl in flight_levels:
                preds = preds_day_dct[flvl]
                probs = probs_day_dct[flvl]
                fd_preds = preds_2d_dct[flvl]
                fd_probs = probs_2d_dct[flvl]
                fd_preds[day_idxs] = preds[day_idxs]
                fd_probs[day_idxs] = probs[day_idxs]

        if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0:
            preds_nght_dct, probs_nght_dct = icing_fcn.run_evaluate_static(data_dct, 1, night_model_path,
                                                                           day_night='NIGHT', l1b_or_l2=l1b_andor_l2,
                                                                           prob_thresh=prob_thresh,
                                                                           use_flight_altitude=use_flight_altitude,
                                                                           flight_levels=flight_levels)
            for flvl in flight_levels:
                preds = preds_nght_dct[flvl]
                probs = probs_nght_dct[flvl]
                fd_preds = preds_2d_dct[flvl]
                fd_probs = probs_2d_dct[flvl]
                fd_preds[nght_idxs] = preds[nght_idxs]
                fd_probs[nght_idxs] = probs[nght_idxs]

        for flvl in flight_levels:
            fd_preds = preds_2d_dct[flvl]
            fd_probs = probs_2d_dct[flvl]
            preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems))
            probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems))

        write_icing_file_nc4(clvrx_str_time, output_dir, preds_2d_dct, probs_2d_dct,
                             x_rad, y_rad, lons_2d, lats_2d, cc, ll,
                             satellite=satellite, domain=domain, use_nan=use_nan, prob_thresh=prob_thresh)

        print('Done: ', clvrx_str_time)
        h5f.close()


def run_icing_predict_image(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir,
                            day_model_path=model_path_day, night_model_path=model_path_night,
                            prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO',
                            l1b_andor_l2='BOTH', use_flight_altitude=True, res_fac=1, model_type='CNN',
                            extent=[-105, -70, 15, 50],
                            pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv',
                            obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None):
    if model_type == 'CNN':
        model_module = icing_cnn
    elif model_type == 'FCN':
        model_module = icing_fcn

    if use_flight_altitude is True:
        flight_levels = [0, 1, 2, 3, 4]
    else:
        flight_levels = [0]

    if pirep_file is not None:
        ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file)

    alt_lo, alt_hi = 0.0, 15000.0
    if flight_level is not None:
        alt_lo, alt_hi = flt_level_ranges[flight_level]

    day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2)
    nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2)

    if day_night == 'AUTO':
        train_params = list(set(day_train_params + nght_train_params))
    elif day_night == 'DAY':
        train_params = day_train_params
    elif day_night == 'NIGHT':
        train_params = nght_train_params

    if satellite == 'H08':
        clvrx_ds = CLAVRx_H08(clvrx_dir)
    else:
        clvrx_ds = CLAVRx(clvrx_dir)
    clvrx_files = clvrx_ds.flist

    for fidx, fname in enumerate(clvrx_files):
        h5f = h5py.File(fname, 'r')
        dto = clvrx_ds.get_datetime(fname)
        ts = dto.timestamp()
        clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')

        data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain, res_fac=res_fac)

        if fidx == 0:
            num_elems = len(cc)
            num_lines = len(ll)
            nav = get_navigation(satellite, domain)

        ancil_data_dct, _, _ = make_for_full_domain_predict(h5f, name_list=
                            ['solar_zenith_angle', 'sensor_zenith_angle', 'cld_height_acha', 'cld_geo_thick'],
                            satellite=satellite, domain=domain, res_fac=res_fac)

        satzen = ancil_data_dct['sensor_zenith_angle']
        solzen = ancil_data_dct['solar_zenith_angle']
        day_idxs = []
        nght_idxs = []
        for j in range(num_lines):
            for i in range(num_elems):
                k = i + j*num_elems
                if not check_oblique(satzen[k]):
                    continue
                if is_day(solzen[k]):
                    day_idxs.append(k)
                else:
                    nght_idxs.append(k)

        num_tiles = num_lines * num_elems
        num_day_tiles = len(day_idxs)
        num_nght_tiles = len(nght_idxs)

        # initialize output arrays
        probs_2d_dct = {flvl: None for flvl in flight_levels}
        preds_2d_dct = {flvl: None for flvl in flight_levels}
        for flvl in flight_levels:
            fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8)
            fd_preds[:] = -1
            fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32)
            fd_probs[:] = -1.0
            preds_2d_dct[flvl] = fd_preds
            probs_2d_dct[flvl] = fd_probs

        if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0:

            day_data_dct = {name: [] for name in day_train_params}
            for name in day_train_params:
                for k in day_idxs:
                    day_data_dct[name].append(data_dct[name][k])
            day_grd_dct = {name: None for name in day_train_params}
            for ds_name in day_train_params:
                day_grd_dct[ds_name] = np.stack(day_data_dct[ds_name])

            preds_day_dct, probs_day_dct = model_module.run_evaluate_static(day_grd_dct, num_day_tiles, day_model_path,
                                                                            day_night='DAY', l1b_or_l2=l1b_andor_l2,
                                                                            prob_thresh=prob_thresh,
                                                                            use_flight_altitude=use_flight_altitude,
                                                                            flight_levels=flight_levels)

            day_idxs = np.array(day_idxs)
            for flvl in flight_levels:
                day_preds = preds_day_dct[flvl]
                day_probs = probs_day_dct[flvl]
                fd_preds = preds_2d_dct[flvl]
                fd_probs = probs_2d_dct[flvl]
                fd_preds[day_idxs] = day_preds[:]
                fd_probs[day_idxs] = day_probs[:]

        if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0:

            nght_data_dct = {name: [] for name in nght_train_params}
            for name in nght_train_params:
                for k in nght_idxs:
                    nght_data_dct[name].append(data_dct[name][k])
            nght_grd_dct = {name: None for name in nght_train_params}
            for ds_name in nght_train_params:
                nght_grd_dct[ds_name] = np.stack(nght_data_dct[ds_name])

            preds_nght_dct, probs_nght_dct = model_module.run_evaluate_static(nght_grd_dct, num_nght_tiles, night_model_path,
                                                                              day_night='NIGHT', l1b_or_l2=l1b_andor_l2,
                                                                              prob_thresh=prob_thresh,
                                                                              use_flight_altitude=use_flight_altitude,
                                                                              flight_levels=flight_levels)
            nght_idxs = np.array(nght_idxs)
            for flvl in flight_levels:
                nght_preds = preds_nght_dct[flvl]
                nght_probs = probs_nght_dct[flvl]
                fd_preds = preds_2d_dct[flvl]
                fd_probs = probs_2d_dct[flvl]
                fd_preds[nght_idxs] = nght_preds[:]
                fd_probs[nght_idxs] = nght_probs[:]

        for flvl in flight_levels:
            fd_preds = preds_2d_dct[flvl]
            fd_probs = probs_2d_dct[flvl]
            preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems))
            probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems))

        dto, _ = get_time_tuple_utc(ts)
        dto_0 = dto - datetime.timedelta(minutes=30)
        dto_1 = dto + datetime.timedelta(minutes=30)
        ts_0 = dto_0.timestamp()
        ts_1 = dto_1.timestamp()

        if pirep_file is not None:
            _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi)
        elif obs_times is not None:
            keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1)
            keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False)
            keep_lons = obs_lons[keep]
            keep_lats = obs_lats[keep]
        else:
            keep_lons = None
            keep_lats = None

        prob_s = []
        for flvl in flight_levels:
            probs = probs_2d_dct[flvl]
            prob_s.append(probs)
        prob_s = np.stack(prob_s, axis=-1)
        max_prob = np.max(prob_s, axis=2)
        max_prob = np.where(max_prob < 0.5, np.nan, max_prob)

        make_icing_image(h5f, max_prob, None, None, clvrx_str_time, satellite, domain,
                         ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent)

        print('Done: ', clvrx_str_time)
        h5f.close()


def run_icing_predict_image_fcn(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir,
                                day_model_path=model_path_day, night_model_path=model_path_night,
                                prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO',
                                l1b_andor_l2='BOTH', use_flight_altitude=True, res_fac=1,
                                extent=[-105, -70, 15, 50],
                                pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv',
                                obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None):

    if use_flight_altitude is True:
        flight_levels = [0, 1, 2, 3, 4]
    else:
        flight_levels = [0]

    if pirep_file is not None:
        ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file)

    alt_lo, alt_hi = 0.0, 15000.0
    if flight_level is not None:
        alt_lo, alt_hi = flt_level_ranges[flight_level]

    day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2)
    nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2)

    if day_night == 'AUTO':
        train_params = list(set(day_train_params + nght_train_params))
    elif day_night == 'DAY':
        train_params = day_train_params
    elif day_night == 'NIGHT':
        train_params = nght_train_params

    if satellite == 'H08':
        clvrx_ds = CLAVRx_H08(clvrx_dir)
    else:
        clvrx_ds = CLAVRx(clvrx_dir)
    clvrx_files = clvrx_ds.flist

    for fidx, fname in enumerate(clvrx_files):
        h5f = h5py.File(fname, 'r')
        dto = clvrx_ds.get_datetime(fname)
        ts = dto.timestamp()
        clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')

        dto, _ = get_time_tuple_utc(ts)
        dto_0 = dto - datetime.timedelta(minutes=30)
        dto_1 = dto + datetime.timedelta(minutes=30)
        ts_0 = dto_0.timestamp()
        ts_1 = dto_1.timestamp()

        if pirep_file is not None:
            _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi)
        elif obs_times is not None:
            keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1)
            keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False)
            keep_lons = obs_lons[keep]
            keep_lats = obs_lats[keep]
        else:
            keep_lons = None
            keep_lats = None

        data_dct, solzen, satzen, ll, cc = prepare_evaluate(h5f, name_list=train_params, satellite=satellite, domain=domain, offset=8)
        num_elems = len(cc)
        num_lines = len(ll)

        if fidx == 0:
            nav = get_navigation(satellite, domain)
            lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc)

        day_idxs = solzen < 80.0
        num_day_tiles = np.sum(day_idxs)

        nght_idxs = solzen > 100.0
        num_nght_tiles = np.sum(nght_idxs)

        # initialize output arrays
        probs_2d_dct = {flvl: None for flvl in flight_levels}
        preds_2d_dct = {flvl: None for flvl in flight_levels}
        for flvl in flight_levels:
            fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8)
            fd_preds[:] = -1
            fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32)
            fd_probs[:] = -1.0
            preds_2d_dct[flvl] = fd_preds
            probs_2d_dct[flvl] = fd_probs

        if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0:

            preds_day_dct, probs_day_dct = icing_fcn.run_evaluate_static(data_dct, day_model_path,
                                                                         day_night='DAY', l1b_or_l2=l1b_andor_l2,
                                                                         prob_thresh=prob_thresh,
                                                                         use_flight_altitude=use_flight_altitude,
                                                                         flight_levels=flight_levels)
            for flvl in flight_levels:
                preds = preds_day_dct[flvl]
                probs = probs_day_dct[flvl]
                fd_preds = preds_2d_dct[flvl]
                fd_probs = probs_2d_dct[flvl]
                fd_preds[day_idxs] = preds[day_idxs]
                fd_probs[day_idxs] = probs[day_idxs]

        if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0:
            preds_nght_dct, probs_nght_dct = icing_fcn.run_evaluate_static_fcn(data_dct, night_model_path,
                                                                               day_night='NIGHT', l1b_or_l2=l1b_andor_l2,
                                                                               prob_thresh=prob_thresh,
                                                                               use_flight_altitude=use_flight_altitude,
                                                                               flight_levels=flight_levels)
            for flvl in flight_levels:
                preds = preds_nght_dct[flvl]
                probs = probs_nght_dct[flvl]
                fd_preds = preds_2d_dct[flvl]
                fd_probs = probs_2d_dct[flvl]
                fd_preds[nght_idxs] = preds[nght_idxs]
                fd_probs[nght_idxs] = probs[nght_idxs]

        for flvl in flight_levels:
            fd_preds = preds_2d_dct[flvl]
            fd_probs = probs_2d_dct[flvl]
            preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems))
            probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems))

        prob_s = []
        for flvl in flight_levels:
            probs = probs_2d_dct[flvl]
            prob_s.append(probs)
        prob_s = np.stack(prob_s, axis=-1)
        max_prob = np.max(prob_s, axis=2)
        max_prob = np.where(max_prob < 0.5, np.nan, max_prob)

        make_icing_image(h5f, max_prob, None, None, clvrx_str_time, satellite, domain,
                         ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent)

        print('Done: ', clvrx_str_time)
        h5f.close()