import numpy as np import deeplearning.icing_fcn as icing_fcn import deeplearning.icing_cnn as icing_cnn from icing.pirep_goes import setup, time_filter_3 from util.util import get_time_tuple_utc, is_day, check_oblique, homedir, write_icing_file_nc4,\ make_for_full_domain_predict, prepare_evaluate from util.plot import make_icing_image from util.geos_nav import get_navigation, get_lon_lat_2d_mesh from util.setup import model_path_day, model_path_night from aeolus.datasource import CLAVRx, CLAVRx_VIIRS, GOESL1B, CLAVRx_H08 import h5py import datetime def get_training_parameters(day_night='DAY', l1b_andor_l2='both'): if day_night == 'DAY': train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction', 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] else: train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction', 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_acha', 'cld_opd_acha'] train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom'] if l1b_andor_l2 == 'both': train_params = train_params_l1b + train_params_l2 elif l1b_andor_l2 == 'l1b': train_params = train_params_l1b elif l1b_andor_l2 == 'l2': train_params = train_params_l2 return train_params flt_level_ranges = {k: None for k in range(5)} flt_level_ranges[0] = [0.0, 2000.0] flt_level_ranges[1] = [2000.0, 4000.0] flt_level_ranges[2] = [4000.0, 6000.0] flt_level_ranges[3] = [6000.0, 8000.0] flt_level_ranges[4] = [8000.0, 15000.0] def run_make_images(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', ckpt_dir_s_path='/Users/tomrink/tf_model/', prob_thresh=0.5, satellite='GOES16', domain='CONUS', extent=[-105, -70, 15, 50], pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv', obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None, use_flight_altitude=False, day_night='DAY', l1b_andor_l2='l2'): if pirep_file is not None: ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file) if satellite == 'H08': clvrx_ds = CLAVRx_H08(clvrx_dir) else: clvrx_ds = CLAVRx(clvrx_dir) clvrx_files = clvrx_ds.flist alt_lo, alt_hi = 0.0, 15000.0 if flight_level is not None: alt_lo, alt_hi = flt_level_ranges[flight_level] train_params = get_training_parameters(day_night=day_night, l1b_andor_l2=l1b_andor_l2) for fidx, fname in enumerate(clvrx_files): h5f = h5py.File(fname, 'r') dto = clvrx_ds.get_datetime(fname) ts = dto.timestamp() clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M') data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain) num_elems, num_lines = len(cc), len(ll) dto, _ = get_time_tuple_utc(ts) dto_0 = dto - datetime.timedelta(minutes=30) dto_1 = dto + datetime.timedelta(minutes=30) ts_0 = dto_0.timestamp() ts_1 = dto_1.timestamp() if pirep_file is not None: _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi) elif obs_times is not None: keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1) keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False) keep_lons = obs_lons[keep] keep_lats = obs_lats[keep] else: keep_lons = None keep_lats = None ice_lons, ice_lats, preds_2d = icing_cnn.run_evaluate_static_avg(data_dct, ll, cc, ckpt_dir_s_path=ckpt_dir_s_path, flight_level=flight_level, prob_thresh=prob_thresh, satellite=satellite, domain=domain, use_flight_altitude=use_flight_altitude) make_icing_image(h5f, None, ice_lons, ice_lats, clvrx_str_time, satellite, domain, ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent) # preds_2d_dct, probs_2d_dct = run_evaluate_static(data_dct, num_lines, num_elems, day_night=day_night, # ckpt_dir_s_path=ckpt_dir_s_path, prob_thresh=prob_thresh, # flight_levels=[0], # use_flight_altitude=use_flight_altitude) # # make_icing_image(None, probs_2d_dct[0], None, None, clvrx_str_time, satellite, domain, # ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent) h5f.close() print('Done: ', clvrx_str_time) def run_icing_predict(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir, day_model_path=model_path_day, night_model_path=model_path_night, prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO', l1b_andor_l2='both', use_flight_altitude=True, res_fac=1, use_nan=False, model_type='CNN'): if model_type == 'CNN': model_module = icing_cnn elif model_type == 'FCN': model_module = icing_fcn if use_flight_altitude is True: flight_levels = [0, 1, 2, 3, 4] else: flight_levels = [0] day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2) nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2) if day_night == 'AUTO': train_params = list(set(day_train_params + nght_train_params)) elif day_night == 'DAY': train_params = day_train_params elif day_night == 'NIGHT': train_params = nght_train_params if satellite == 'H08': clvrx_ds = CLAVRx_H08(clvrx_dir) else: clvrx_ds = CLAVRx(clvrx_dir) clvrx_files = clvrx_ds.flist for fidx, fname in enumerate(clvrx_files): h5f = h5py.File(fname, 'r') dto = clvrx_ds.get_datetime(fname) ts = dto.timestamp() clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M') data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain, res_fac=res_fac) if fidx == 0: num_elems = len(cc) num_lines = len(ll) nav = get_navigation(satellite, domain) lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc, offset=int(8 / res_fac)) ancil_data_dct, _, _ = make_for_full_domain_predict(h5f, name_list= ['solar_zenith_angle', 'sensor_zenith_angle', 'cld_height_acha', 'cld_geo_thick'], satellite=satellite, domain=domain, res_fac=res_fac) satzen = ancil_data_dct['sensor_zenith_angle'] solzen = ancil_data_dct['solar_zenith_angle'] day_idxs = [] nght_idxs = [] for j in range(num_lines): for i in range(num_elems): k = i + j*num_elems if not check_oblique(satzen[k]): continue if is_day(solzen[k]): day_idxs.append(k) else: nght_idxs.append(k) num_tiles = num_lines * num_elems num_day_tiles = len(day_idxs) num_nght_tiles = len(nght_idxs) # initialize output arrays probs_2d_dct = {flvl: None for flvl in flight_levels} preds_2d_dct = {flvl: None for flvl in flight_levels} for flvl in flight_levels: fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8) fd_preds[:] = -1 fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32) fd_probs[:] = -1.0 preds_2d_dct[flvl] = fd_preds probs_2d_dct[flvl] = fd_probs if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0: day_data_dct = {name: [] for name in day_train_params} for name in day_train_params: for k in day_idxs: day_data_dct[name].append(data_dct[name][k]) day_grd_dct = {name: None for name in day_train_params} for ds_name in day_train_params: day_grd_dct[ds_name] = np.stack(day_data_dct[ds_name]) preds_day_dct, probs_day_dct = model_module.run_evaluate_static(day_grd_dct, num_day_tiles, day_model_path, day_night='DAY', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh, use_flight_altitude=use_flight_altitude, flight_levels=flight_levels) day_idxs = np.array(day_idxs) for flvl in flight_levels: day_preds = preds_day_dct[flvl] day_probs = probs_day_dct[flvl] fd_preds = preds_2d_dct[flvl] fd_probs = probs_2d_dct[flvl] fd_preds[day_idxs] = day_preds[:] fd_probs[day_idxs] = day_probs[:] if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0: nght_data_dct = {name: [] for name in nght_train_params} for name in nght_train_params: for k in nght_idxs: nght_data_dct[name].append(data_dct[name][k]) nght_grd_dct = {name: None for name in nght_train_params} for ds_name in nght_train_params: nght_grd_dct[ds_name] = np.stack(nght_data_dct[ds_name]) preds_nght_dct, probs_nght_dct = model_module.run_evaluate_static(nght_grd_dct, num_nght_tiles, night_model_path, day_night='NIGHT', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh, use_flight_altitude=use_flight_altitude, flight_levels=flight_levels) nght_idxs = np.array(nght_idxs) for flvl in flight_levels: nght_preds = preds_nght_dct[flvl] nght_probs = probs_nght_dct[flvl] fd_preds = preds_2d_dct[flvl] fd_probs = probs_2d_dct[flvl] fd_preds[nght_idxs] = nght_preds[:] fd_probs[nght_idxs] = nght_probs[:] for flvl in flight_levels: fd_preds = preds_2d_dct[flvl] fd_probs = probs_2d_dct[flvl] preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems)) probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems)) write_icing_file_nc4(clvrx_str_time, output_dir, preds_2d_dct, probs_2d_dct, x_rad, y_rad, lons_2d, lats_2d, cc, ll, satellite=satellite, domain=domain, use_nan=use_nan, prob_thresh=prob_thresh) print('Done: ', clvrx_str_time) h5f.close() def run_icing_predict_fcn(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir, day_model_path=model_path_day, night_model_path=model_path_night, prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO', l1b_andor_l2='both', use_flight_altitude=False, res_fac=1, use_nan=False): if use_flight_altitude is True: flight_levels = [0, 1, 2, 3, 4] else: flight_levels = [0] day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2) nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2) if day_night == 'AUTO': train_params = list(set(day_train_params + nght_train_params)) elif day_night == 'DAY': train_params = day_train_params elif day_night == 'NIGHT': train_params = nght_train_params if satellite == 'H08': clvrx_ds = CLAVRx_H08(clvrx_dir) else: clvrx_ds = CLAVRx(clvrx_dir) clvrx_files = clvrx_ds.flist for fidx, fname in enumerate(clvrx_files): h5f = h5py.File(fname, 'r') dto = clvrx_ds.get_datetime(fname) ts = dto.timestamp() clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M') data_dct, solzen, satzen, ll, cc = prepare_evaluate(h5f, name_list=train_params, satellite=satellite, domain=domain, offset=8) num_elems = len(cc) num_lines = len(ll) if fidx == 0: nav = get_navigation(satellite, domain) lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc) day_idxs = solzen < 80.0 num_day_tiles = np.sum(day_idxs) nght_idxs = solzen > 100.0 num_nght_tiles = np.sum(nght_idxs) # initialize output arrays probs_2d_dct = {flvl: None for flvl in flight_levels} preds_2d_dct = {flvl: None for flvl in flight_levels} for flvl in flight_levels: fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8) fd_preds[:] = -1 fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32) fd_probs[:] = -1.0 preds_2d_dct[flvl] = fd_preds probs_2d_dct[flvl] = fd_probs if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0: preds_day_dct, probs_day_dct = icing_fcn.run_evaluate_static(data_dct, 1, day_model_path, day_night='DAY', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh, use_flight_altitude=use_flight_altitude, flight_levels=flight_levels) for flvl in flight_levels: preds = preds_day_dct[flvl] probs = probs_day_dct[flvl] fd_preds = preds_2d_dct[flvl] fd_probs = probs_2d_dct[flvl] fd_preds[day_idxs] = preds[day_idxs] fd_probs[day_idxs] = probs[day_idxs] if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0: preds_nght_dct, probs_nght_dct = icing_fcn.run_evaluate_static(data_dct, 1, night_model_path, day_night='NIGHT', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh, use_flight_altitude=use_flight_altitude, flight_levels=flight_levels) for flvl in flight_levels: preds = preds_nght_dct[flvl] probs = probs_nght_dct[flvl] fd_preds = preds_2d_dct[flvl] fd_probs = probs_2d_dct[flvl] fd_preds[nght_idxs] = preds[nght_idxs] fd_probs[nght_idxs] = probs[nght_idxs] for flvl in flight_levels: fd_preds = preds_2d_dct[flvl] fd_probs = probs_2d_dct[flvl] preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems)) probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems)) write_icing_file_nc4(clvrx_str_time, output_dir, preds_2d_dct, probs_2d_dct, x_rad, y_rad, lons_2d, lats_2d, cc, ll, satellite=satellite, domain=domain, use_nan=use_nan, prob_thresh=prob_thresh) print('Done: ', clvrx_str_time) h5f.close() def run_icing_predict_image(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir, day_model_path=model_path_day, night_model_path=model_path_night, prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO', l1b_andor_l2='BOTH', use_flight_altitude=True, res_fac=1, model_type='CNN', extent=[-105, -70, 15, 50], pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv', obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None): if model_type == 'CNN': model_module = icing_cnn elif model_type == 'FCN': model_module = icing_fcn if use_flight_altitude is True: flight_levels = [0, 1, 2, 3, 4] else: flight_levels = [0] if pirep_file is not None: ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file) alt_lo, alt_hi = 0.0, 15000.0 if flight_level is not None: alt_lo, alt_hi = flt_level_ranges[flight_level] day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2) nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2) if day_night == 'AUTO': train_params = list(set(day_train_params + nght_train_params)) elif day_night == 'DAY': train_params = day_train_params elif day_night == 'NIGHT': train_params = nght_train_params if satellite == 'H08': clvrx_ds = CLAVRx_H08(clvrx_dir) else: clvrx_ds = CLAVRx(clvrx_dir) clvrx_files = clvrx_ds.flist for fidx, fname in enumerate(clvrx_files): h5f = h5py.File(fname, 'r') dto = clvrx_ds.get_datetime(fname) ts = dto.timestamp() clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M') data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain, res_fac=res_fac) if fidx == 0: num_elems = len(cc) num_lines = len(ll) nav = get_navigation(satellite, domain) ancil_data_dct, _, _ = make_for_full_domain_predict(h5f, name_list= ['solar_zenith_angle', 'sensor_zenith_angle', 'cld_height_acha', 'cld_geo_thick'], satellite=satellite, domain=domain, res_fac=res_fac) satzen = ancil_data_dct['sensor_zenith_angle'] solzen = ancil_data_dct['solar_zenith_angle'] day_idxs = [] nght_idxs = [] for j in range(num_lines): for i in range(num_elems): k = i + j*num_elems if not check_oblique(satzen[k]): continue if is_day(solzen[k]): day_idxs.append(k) else: nght_idxs.append(k) num_tiles = num_lines * num_elems num_day_tiles = len(day_idxs) num_nght_tiles = len(nght_idxs) # initialize output arrays probs_2d_dct = {flvl: None for flvl in flight_levels} preds_2d_dct = {flvl: None for flvl in flight_levels} for flvl in flight_levels: fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8) fd_preds[:] = -1 fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32) fd_probs[:] = -1.0 preds_2d_dct[flvl] = fd_preds probs_2d_dct[flvl] = fd_probs if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0: day_data_dct = {name: [] for name in day_train_params} for name in day_train_params: for k in day_idxs: day_data_dct[name].append(data_dct[name][k]) day_grd_dct = {name: None for name in day_train_params} for ds_name in day_train_params: day_grd_dct[ds_name] = np.stack(day_data_dct[ds_name]) preds_day_dct, probs_day_dct = model_module.run_evaluate_static(day_grd_dct, num_day_tiles, day_model_path, day_night='DAY', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh, use_flight_altitude=use_flight_altitude, flight_levels=flight_levels) day_idxs = np.array(day_idxs) for flvl in flight_levels: day_preds = preds_day_dct[flvl] day_probs = probs_day_dct[flvl] fd_preds = preds_2d_dct[flvl] fd_probs = probs_2d_dct[flvl] fd_preds[day_idxs] = day_preds[:] fd_probs[day_idxs] = day_probs[:] if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0: nght_data_dct = {name: [] for name in nght_train_params} for name in nght_train_params: for k in nght_idxs: nght_data_dct[name].append(data_dct[name][k]) nght_grd_dct = {name: None for name in nght_train_params} for ds_name in nght_train_params: nght_grd_dct[ds_name] = np.stack(nght_data_dct[ds_name]) preds_nght_dct, probs_nght_dct = model_module.run_evaluate_static(nght_grd_dct, num_nght_tiles, night_model_path, day_night='NIGHT', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh, use_flight_altitude=use_flight_altitude, flight_levels=flight_levels) nght_idxs = np.array(nght_idxs) for flvl in flight_levels: nght_preds = preds_nght_dct[flvl] nght_probs = probs_nght_dct[flvl] fd_preds = preds_2d_dct[flvl] fd_probs = probs_2d_dct[flvl] fd_preds[nght_idxs] = nght_preds[:] fd_probs[nght_idxs] = nght_probs[:] for flvl in flight_levels: fd_preds = preds_2d_dct[flvl] fd_probs = probs_2d_dct[flvl] preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems)) probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems)) dto, _ = get_time_tuple_utc(ts) dto_0 = dto - datetime.timedelta(minutes=30) dto_1 = dto + datetime.timedelta(minutes=30) ts_0 = dto_0.timestamp() ts_1 = dto_1.timestamp() if pirep_file is not None: _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi) elif obs_times is not None: keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1) keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False) keep_lons = obs_lons[keep] keep_lats = obs_lats[keep] else: keep_lons = None keep_lats = None prob_s = [] for flvl in flight_levels: probs = probs_2d_dct[flvl] prob_s.append(probs) prob_s = np.stack(prob_s, axis=-1) max_prob = np.max(prob_s, axis=2) max_prob = np.where(max_prob < 0.5, np.nan, max_prob) make_icing_image(h5f, max_prob, None, None, clvrx_str_time, satellite, domain, ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent) print('Done: ', clvrx_str_time) h5f.close() def run_icing_predict_image_fcn(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir, day_model_path=model_path_day, night_model_path=model_path_night, prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO', l1b_andor_l2='BOTH', use_flight_altitude=True, res_fac=1, extent=[-105, -70, 15, 50], pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv', obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None): if use_flight_altitude is True: flight_levels = [0, 1, 2, 3, 4] else: flight_levels = [0] if pirep_file is not None: ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file) alt_lo, alt_hi = 0.0, 15000.0 if flight_level is not None: alt_lo, alt_hi = flt_level_ranges[flight_level] day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2) nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2) if day_night == 'AUTO': train_params = list(set(day_train_params + nght_train_params)) elif day_night == 'DAY': train_params = day_train_params elif day_night == 'NIGHT': train_params = nght_train_params if satellite == 'H08': clvrx_ds = CLAVRx_H08(clvrx_dir) else: clvrx_ds = CLAVRx(clvrx_dir) clvrx_files = clvrx_ds.flist for fidx, fname in enumerate(clvrx_files): h5f = h5py.File(fname, 'r') dto = clvrx_ds.get_datetime(fname) ts = dto.timestamp() clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M') dto, _ = get_time_tuple_utc(ts) dto_0 = dto - datetime.timedelta(minutes=30) dto_1 = dto + datetime.timedelta(minutes=30) ts_0 = dto_0.timestamp() ts_1 = dto_1.timestamp() if pirep_file is not None: _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi) elif obs_times is not None: keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1) keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False) keep_lons = obs_lons[keep] keep_lats = obs_lats[keep] else: keep_lons = None keep_lats = None data_dct, solzen, satzen, ll, cc = prepare_evaluate(h5f, name_list=train_params, satellite=satellite, domain=domain, offset=8) num_elems = len(cc) num_lines = len(ll) if fidx == 0: nav = get_navigation(satellite, domain) lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc) day_idxs = solzen < 80.0 num_day_tiles = np.sum(day_idxs) nght_idxs = solzen > 100.0 num_nght_tiles = np.sum(nght_idxs) # initialize output arrays probs_2d_dct = {flvl: None for flvl in flight_levels} preds_2d_dct = {flvl: None for flvl in flight_levels} for flvl in flight_levels: fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8) fd_preds[:] = -1 fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32) fd_probs[:] = -1.0 preds_2d_dct[flvl] = fd_preds probs_2d_dct[flvl] = fd_probs if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0: preds_day_dct, probs_day_dct = icing_fcn.run_evaluate_static(data_dct, day_model_path, day_night='DAY', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh, use_flight_altitude=use_flight_altitude, flight_levels=flight_levels) for flvl in flight_levels: preds = preds_day_dct[flvl] probs = probs_day_dct[flvl] fd_preds = preds_2d_dct[flvl] fd_probs = probs_2d_dct[flvl] fd_preds[day_idxs] = preds[day_idxs] fd_probs[day_idxs] = probs[day_idxs] if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0: preds_nght_dct, probs_nght_dct = icing_fcn.run_evaluate_static_fcn(data_dct, night_model_path, day_night='NIGHT', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh, use_flight_altitude=use_flight_altitude, flight_levels=flight_levels) for flvl in flight_levels: preds = preds_nght_dct[flvl] probs = probs_nght_dct[flvl] fd_preds = preds_2d_dct[flvl] fd_probs = probs_2d_dct[flvl] fd_preds[nght_idxs] = preds[nght_idxs] fd_probs[nght_idxs] = probs[nght_idxs] for flvl in flight_levels: fd_preds = preds_2d_dct[flvl] fd_probs = probs_2d_dct[flvl] preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems)) probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems)) prob_s = [] for flvl in flight_levels: probs = probs_2d_dct[flvl] prob_s.append(probs) prob_s = np.stack(prob_s, axis=-1) max_prob = np.max(prob_s, axis=2) max_prob = np.where(max_prob < 0.5, np.nan, max_prob) make_icing_image(h5f, max_prob, None, None, clvrx_str_time, satellite, domain, ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent) print('Done: ', clvrx_str_time) h5f.close()