import tensorflow as tf from util.setup import logdir, modeldir, cachepath import subprocess import os, datetime import numpy as np import xarray as xr import pickle from deeplearning.amv_raob import get_bounding_gfs_files, convert_file, get_images, get_interpolated_profile, \ split_matchup, shuffle_dict, get_interpolated_scalar, get_num_samples, get_time_tuple_utc, get_profile LOG_DEVICE_PLACEMENT = False CACHE_DATA_IN_MEM = True CACHE_GFS = True PROC_BATCH_SIZE = 60 PROC_BATCH_BUFFER_SIZE = 50000 NumLabels = 1 BATCH_SIZE = 256 NUM_EPOCHS = 200 TRACK_MOVING_AVERAGE = False DAY_NIGHT = 'ANY' TRIPLET = False CONV3D = False abi_2km_channels = ['14', '08', '11', '13', '15', '16'] # abi_2km_channels = ['08', '09', '10'] abi_hkm_channels = [] # abi_channels = abi_2km_channels + abi_hkm_channels abi_channels = abi_2km_channels abi_mean = {'08': 236.014, '14': 275.229, '02': 0.049, '11': 273.582, '13': 275.796, '15': 272.928, '16': 260.956, '09': 244.502, '10': 252.375} abi_std = {'08': 7.598, '14': 20.443, '02': 0.082, '11': 19.539, '13': 20.431, '15': 20.104, '16': 15.720, '09': 9.827, '10': 11.765} abi_valid_range = {'02': [0.001, 120], '08': [150, 350], '14': [150, 350], '11': [150, 350], '13': [150, 350], '15': [150, 350], '16': [150, 350], '09': [150, 350], '10': [150, 350]} abi_half_width = {'08': 12, '14': 12, '02': 48, '11': 12, '13': 12, '15': 12, '16': 12, '09': 12, '10': 12} #abi_half_width = {'08': 6, '14': 6, '02': 24, '11': 6, '13': 6, '15': 6, '16': 6, '09': 6, '10': 6} #abi_half_width = {'08': 3, '14': 3, '02': 12, '11': 3, '13': 3, '15': 3, '16': 3, '09': 3, '10': 3} abi_stride = {'08': 1, '14': 1, '02': 4, '11': 1, '13': 1, '15': 1, '16': 1, '09': 1, '10': 1} img_width = 24 #img_width = 12 #img_width = 6 NUM_VERT_LEVELS = 26 NUM_VERT_PARAMS = 2 gfs_mean_temp = [225.481110, 218.950729, 215.830338, 212.063187, 209.348038, 208.787033, 213.728928, 218.298264, 223.061020, 229.190445, 236.095215, 242.589493, 248.333237, 253.357071, 257.768646, 261.599396, 264.793671, 267.667603, 270.408478, 272.841919, 274.929138, 276.826294, 277.786865, 278.834198, 279.980408, 281.308380] gfs_mean_temp = np.array(gfs_mean_temp) gfs_mean_temp = np.reshape(gfs_mean_temp, (1, gfs_mean_temp.shape[0])) gfs_std_temp = [13.037852, 11.669035, 10.775956, 10.428216, 11.705231, 12.352798, 8.892235, 7.101064, 8.505628, 10.815929, 12.139559, 12.720000, 12.929382, 13.023590, 13.135534, 13.543551, 14.449997, 15.241049, 15.638563, 15.943666, 16.178715, 16.458992, 16.700863, 17.109579, 17.630177, 18.080544] gfs_std_temp = np.array(gfs_std_temp) gfs_std_temp = np.reshape(gfs_std_temp, (1, gfs_std_temp.shape[0])) mean_std_dict = {'temperature': (gfs_mean_temp, gfs_std_temp), 'surface temperature': (279.35, 22.81), 'MSL pressure': (1010.64, 13.46), 'tropopause temperature': (208.17, 11.36), 'tropopause pressure': (219.62, 78.79)} valid_range_dict = {'temperature': (150, 350), 'surface temperature': (150, 350), 'MSL pressure': (800, 1050), 'tropopause temperature': (150, 250), 'tropopause pressure': (100, 500)} def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True): with tf.name_scope(block_name): if doDropout: fc = tf.keras.layers.Dropout(drop_rate)(input) fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) else: fc = tf.keras.layers.Dense(num_neurons, activation=activation)(input) if doBatchNorm: fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) fc_skip = fc if doDropout: fc = tf.keras.layers.Dropout(drop_rate)(fc) fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) if doBatchNorm: fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) if doDropout: fc = tf.keras.layers.Dropout(drop_rate)(fc) fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) if doBatchNorm: fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) if doDropout: fc = tf.keras.layers.Dropout(drop_rate)(fc) fc = tf.keras.layers.Dense(num_neurons, activation=None)(fc) if doBatchNorm: fc = tf.keras.layers.BatchNormalization()(fc) fc = fc + fc_skip fc = tf.keras.layers.LeakyReLU()(fc) print(fc.shape) return fc class CloudHeightNN: def __init__(self, gpu_device=0, datapath=None): self.train_data = None self.train_label = None self.test_data = None self.test_label = None self.test_data_denorm = None self.train_dataset = None self.inner_train_dataset = None self.test_dataset = None self.X_img = None self.X_prof = None self.X_u = None self.X_v = None self.X_sfc = None self.inputs = [] self.y = None self.handle = None self.inner_handle = None self.in_mem_batch = None self.matchup_dict = None self.logits = None self.predict_data = None self.predict_dataset = None self.mean_list = None self.std_list = None self.training_op = None self.correct = None self.accuracy = None self.loss = None self.pred_class = None self.gpu_device = gpu_device self.variable_averages = None self.global_step = None self.writer_train = None self.writer_valid = None self.OUT_OF_RANGE = False self.abi = None self.temp = None self.wv = None self.lbfp = None self.sfc = None self.in_mem_data_cache = {} self.model = None self.optimizer = None self.train_loss = None self.train_accuracy = None self.test_loss = None self.test_accuracy = None self.accuracy_0 = None self.accuracy_1 = None self.accuracy_2 = None self.accuracy_3 = None self.accuracy_4 = None self.accuracy_5 = None self.num_0 = 0 self.num_1 = 0 self.num_2 = 0 self.num_3 = 0 self.num_4 = 0 self.num_5 = 0 self.learningRateSchedule = None self.num_data_samples = None self.initial_learning_rate = None n_chans = len(abi_channels) if TRIPLET: n_chans *= 3 self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans)) self.X_prof = tf.keras.Input(shape=(NUM_VERT_LEVELS, NUM_VERT_PARAMS)) self.X_sfc = tf.keras.Input(shape=2) self.inputs.append(self.X_img) self.inputs.append(self.X_prof) self.inputs.append(self.X_sfc) self.DISK_CACHE = True if datapath is not None: self.DISK_CACHE = False f = open(datapath, 'rb') self.in_mem_data_cache = pickle.load(f) f.close() tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: # Currently, memory growth needs to be the same across GPUs for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: # Memory growth must be set before GPUs have been initialized print(e) def get_in_mem_data_batch(self, time_keys): images = [] vprof = [] label = [] sfc = [] for key in time_keys: if CACHE_DATA_IN_MEM: tup = self.in_mem_data_cache.get(key) if tup is not None: images.append(tup[0]) vprof.append(tup[1]) label.append(tup[2]) sfc.append(tup[3]) continue obs = self.matchup_dict.get(key) if obs is None: print('no entry for: ', key) timestamp = obs[0][0] print('not found in cache, processing key: ', key, get_time_tuple_utc(timestamp)[0]) gfs_0, time_0, gfs_1, time_1 = get_bounding_gfs_files(timestamp) if (gfs_0 is None) and (gfs_1 is None): print('no GFS for: ', get_time_tuple_utc(timestamp)[0]) continue try: gfs_0 = convert_file(gfs_0) if gfs_1 is not None: gfs_1 = convert_file(gfs_1) except Exception as exc: print(get_time_tuple_utc(timestamp)[0]) print(exc) continue ds_1 = None try: ds_0 = xr.open_dataset(gfs_0) if gfs_1 is not None: ds_1 = xr.open_dataset(gfs_1) except Exception as exc: print(exc) continue lons = obs[:, 2] lats = obs[:, 1] half_width = [abi_half_width.get(ch) for ch in abi_2km_channels] strides = [abi_stride.get(ch) for ch in abi_2km_channels] img_a_s, img_a_s_l, img_a_s_r, idxs_a = get_images(lons, lats, timestamp, abi_2km_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT) if idxs_a.size == 0: print('no images for: ', timestamp) continue idxs_b = None if len(abi_hkm_channels) > 0: half_width = [abi_half_width.get(ch) for ch in abi_hkm_channels] strides = [abi_stride.get(ch) for ch in abi_hkm_channels] img_b_s, img_b_s_l, img_b_s_r, idxs_b = get_images(lons, lats, timestamp, abi_hkm_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT) if idxs_b.size == 0: print('no hkm images for: ', timestamp) continue if idxs_b is None: common_idxs = idxs_a img_a_s = img_a_s[:, common_idxs, :, :] img_s = img_a_s if TRIPLET: img_a_s_l = img_a_s_l[:, common_idxs, :, :] img_a_s_r = img_a_s_r[:, common_idxs, :, :] img_s_l = img_a_s_l img_s_r = img_a_s_r else: common_idxs = np.intersect1d(idxs_a, idxs_b) img_a_s = img_a_s[:, common_idxs, :, :] img_b_s = img_b_s[:, common_idxs, :, :] img_s = np.vstack([img_a_s, img_b_s]) # TODO: Triplet support lons = lons[common_idxs] lats = lats[common_idxs] if ds_1 is not None: ndb = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'temperature', timestamp, lons, lats, do_norm=True) else: ndb = get_profile(ds_0, 'temperature', lons, lats, do_norm=True) if ndb is None: continue if ds_1 is not None: ndf = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'rh', timestamp, lons, lats, do_norm=False) else: ndf = get_profile(ds_0, 'rh', lons, lats, do_norm=False) if ndf is None: continue ndf /= 100.0 ndb = np.stack((ndb, ndf), axis=2) #ndd = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'MSL pressure', timestamp, lons, lats, do_norm=False) #ndd /= 1000.0 #nde = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'surface temperature', timestamp, lons, lats, do_norm=True) # label/truth # Level of best fit (LBF) ndc = obs[common_idxs, 3] # AMV Predicted # ndc = obs[common_idxs, 4] ndc /= 1000.0 nda = np.transpose(img_s, axes=[1, 2, 3, 0]) if TRIPLET or CONV3D: nda_l = np.transpose(img_s_l, axes=[1, 2, 3, 0]) nda_r = np.transpose(img_s_r, axes=[1, 2, 3, 0]) if CONV3D: nda = np.stack((nda_l, nda, nda_r), axis=4) nda = np.transpose(nda, axes=[0, 1, 2, 4, 3]) else: nda = np.concatenate([nda, nda_l, nda_r], axis=3) images.append(nda) vprof.append(ndb) label.append(ndc) # nds = np.stack([ndd, nde], axis=1) nds = np.zeros((len(lons), 2)) sfc.append(nds) if not CACHE_GFS: subprocess.call(['rm', gfs_0, gfs_1]) if CACHE_DATA_IN_MEM: self.in_mem_data_cache[key] = (nda, ndb, ndc, nds) ds_0.close() if ds_1 is not None: ds_1.close() images = np.concatenate(images) label = np.concatenate(label) label = np.reshape(label, (label.shape[0], 1)) vprof = np.concatenate(vprof) sfc = np.concatenate(sfc) return images, vprof, label, sfc @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function(self, input): out = tf.numpy_function(self.get_in_mem_data_batch, [input], [tf.float32, tf.float64, tf.float64, tf.float64]) return out def get_train_dataset(self, time_keys): time_keys = list(time_keys) dataset = tf.data.Dataset.from_tensor_slices(time_keys) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset def get_test_dataset(self, time_keys): time_keys = list(time_keys) dataset = tf.data.Dataset.from_tensor_slices(time_keys) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) self.test_dataset = dataset def setup_pipeline(self, matchup_dict, train_dict=None, valid_test_dict=None): self.matchup_dict = matchup_dict if train_dict is None: if valid_test_dict is not None: self.matchup_dict = valid_test_dict valid_keys = list(valid_test_dict.keys()) self.get_test_dataset(valid_keys) self.num_data_samples = get_num_samples(valid_test_dict, valid_keys) print('num test samples: ', self.num_data_samples) print('setup_pipeline: Done') return train_dict, valid_test_dict = split_matchup(matchup_dict, perc=0.10) train_dict = shuffle_dict(train_dict) train_keys = list(train_dict.keys()) self.get_train_dataset(train_keys) self.num_data_samples = get_num_samples(train_dict, train_keys) print('num data samples: ', self.num_data_samples) print('BATCH SIZE: ', BATCH_SIZE) valid_keys = list(valid_test_dict.keys()) self.get_test_dataset(valid_keys) print('num test samples: ', get_num_samples(valid_test_dict, valid_keys)) print('setup_pipeline: Done') def build_1d_cnn(self): print('build_1d_cnn') # padding = 'VALID' padding = 'SAME' # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.leaky_relu num_filters = 6 conv = tf.keras.layers.Conv1D(num_filters, 5, strides=1, padding=padding)(self.inputs[1]) conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) print(conv) num_filters *= 2 conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) print(conv) num_filters *= 2 conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) print(conv) num_filters *= 2 conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) print(conv) flat = tf.keras.layers.Flatten()(conv) print(flat) return flat def build_cnn(self): print('build_cnn') # padding = "VALID" padding = "SAME" # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.leaky_relu momentum = 0.99 num_filters = 8 conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(self.inputs[0]) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) num_filters *= 2 conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) num_filters *= 2 conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) num_filters *= 2 conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) num_filters *= 2 conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) flat = tf.keras.layers.Flatten()(conv) return flat def build_anc_dnn(self): print('build_anc_dnn') drop_rate = 0.5 # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.leaky_relu momentum = 0.99 n_hidden = self.X_sfc.shape[1] with tf.name_scope("Residual_Block_6"): fc = tf.keras.layers.Dropout(drop_rate)(self.inputs[2]) fc = tf.keras.layers.Dense(4*n_hidden, activation=activation)(fc) fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) fc_skip = fc fc = tf.keras.layers.Dropout(drop_rate)(fc) fc = tf.keras.layers.Dense(4*n_hidden, activation=activation)(fc) fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) fc = tf.keras.layers.Dropout(drop_rate)(fc) fc = tf.keras.layers.Dense(4*n_hidden, activation=None)(fc) fc = tf.keras.layers.BatchNormalization()(fc) fc = fc + fc_skip fc = tf.keras.layers.LeakyReLU()(fc) print(fc.shape) return fc def build_dnn(self, input_layer=None): print('build fully connected layer') drop_rate = 0.5 # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.leaky_relu momentum = 0.99 if input_layer is not None: flat = input_layer n_hidden = input_layer.shape[1] else: flat = self.X_img n_hidden = self.X_img.shape[1] fac = 1 fc = build_residual_block(flat, drop_rate, fac*n_hidden, activation, 'Residual_Block_1') fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2') fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3') fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4') fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5') fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc) fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) logits = tf.keras.layers.Dense(NumLabels)(fc) print(logits.shape) self.logits = logits def build_training(self): self.loss = tf.keras.losses.MeanSquaredError() # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) initial_learning_rate = 0.0016 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch # decay_steps = int(steps_per_epoch / 2) decay_steps = 2 * steps_per_epoch print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) if TRACK_MOVING_AVERAGE: ema = tf.train.ExponentialMovingAverage(decay=0.999) with tf.control_dependencies([optimizer]): optimizer = ema.apply(self.model.trainable_variables) self.optimizer = optimizer self.initial_learning_rate = initial_learning_rate def build_evaluation(self): self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy') self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy') self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss') self.accuracy_0 = tf.keras.metrics.MeanAbsoluteError(name='acc_0') self.accuracy_1 = tf.keras.metrics.MeanAbsoluteError(name='acc_1') self.accuracy_2 = tf.keras.metrics.MeanAbsoluteError(name='acc_2') self.accuracy_3 = tf.keras.metrics.MeanAbsoluteError(name='acc_3') self.accuracy_4 = tf.keras.metrics.MeanAbsoluteError(name='acc_4') self.accuracy_5 = tf.keras.metrics.MeanAbsoluteError(name='acc_5') def build_predict(self): _, pred = tf.nn.top_k(self.logits) self.pred_class = pred if TRACK_MOVING_AVERAGE: self.variable_averages = tf.train.ExponentialMovingAverage(0.999, self.global_step) self.variable_averages.apply(self.model.trainable_variables) @tf.function def train_step(self, mini_batch): inputs = [mini_batch[0], mini_batch[1], mini_batch[3]] labels = mini_batch[2] with tf.GradientTape() as tape: pred = self.model(inputs, training=True) loss = self.loss(labels, pred) total_loss = loss if len(self.model.losses) > 0: reg_loss = tf.math.add_n(self.model.losses) total_loss = loss + reg_loss gradients = tape.gradient(total_loss, self.model.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) self.train_loss(loss) self.train_accuracy(labels, pred) return loss @tf.function def test_step(self, mini_batch): inputs = [mini_batch[0], mini_batch[1], mini_batch[3]] labels = mini_batch[2] pred = self.model(inputs, training=False) t_loss = self.loss(labels, pred) self.test_loss(t_loss) self.test_accuracy(labels, pred) def predict(self, mini_batch): inputs = [mini_batch[0], mini_batch[1], mini_batch[3]] labels = mini_batch[2] pred = self.model(inputs, training=False) t_loss = self.loss(labels, pred) self.test_loss(t_loss) self.test_accuracy(labels, pred) m = np.logical_and(labels >= 0.01, labels < 0.2) self.num_0 += np.sum(m) self.accuracy_0(labels[m], pred[m]) m = np.logical_and(labels >= 0.2, labels < 0.4) self.num_1 += np.sum(m) self.accuracy_1(labels[m], pred[m]) m = np.logical_and(labels >= 0.4, labels < 0.6) self.num_2 += np.sum(m) self.accuracy_2(labels[m], pred[m]) m = np.logical_and(labels >= 0.6, labels < 0.8) self.num_3 += np.sum(m) self.accuracy_3(labels[m], pred[m]) m = np.logical_and(labels >= 0.8, labels < 1.15) self.num_4 += np.sum(m) self.accuracy_4(labels[m], pred[m]) m = np.logical_and(labels >= 0.01, labels < 0.5) self.num_5 += np.sum(m) self.accuracy_5(labels[m], pred[m]) def do_training(self, ckpt_dir=None): if ckpt_dir is None: if not os.path.exists(modeldir): os.mkdir(modeldir) ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) else: ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) step = 0 total_time = 0 for epoch in range(NUM_EPOCHS): self.train_loss.reset_states() self.train_accuracy.reset_states() t0 = datetime.datetime.now().timestamp() proc_batch_cnt = 0 n_samples = 0 for abi, temp, lbfp, sfc in self.train_dataset: trn_ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc)) trn_ds = trn_ds.batch(BATCH_SIZE) for mini_batch in trn_ds: if self.learningRateSchedule is not None: loss = self.train_step(mini_batch) if (step % 100) == 0: with self.writer_train.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_epochs', epoch, step=step) self.test_loss.reset_states() self.test_accuracy.reset_states() for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset: tst_ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst)) tst_ds = tst_ds.batch(BATCH_SIZE) for mini_batch_test in tst_ds: self.test_step(mini_batch_test) with self.writer_valid.as_default(): tf.summary.scalar('loss_val', self.test_loss.result(), step=step) tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_epochs', epoch, step=step) print('****** test loss, acc: ', self.test_loss.result(), self.test_accuracy.result()) step += 1 print('train loss: ', loss.numpy()) proc_batch_cnt += 1 n_samples += abi.shape[0] print('proc_batch_cnt: ', proc_batch_cnt, n_samples) t1 = datetime.datetime.now().timestamp() print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) total_time += (t1-t0) self.test_loss.reset_states() self.test_accuracy.reset_states() for abi, temp, lbfp, sfc in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc)) ds = ds.batch(BATCH_SIZE) for mini_batch in ds: self.test_step(mini_batch) print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result()) ckpt_manager.save() if self.DISK_CACHE and epoch == 0: f = open(cachepath, 'wb') pickle.dump(self.in_mem_data_cache, f) f.close() print('total time: ', total_time) self.writer_train.close() self.writer_valid.close() def build_model(self): flat = self.build_cnn() flat_1d = self.build_1d_cnn() # flat_anc = self.build_anc_dnn() # flat = tf.keras.layers.concatenate([flat, flat_1d, flat_anc]) flat = tf.keras.layers.concatenate([flat, flat_1d]) self.build_dnn(flat) self.model = tf.keras.Model(self.inputs, self.logits) def restore(self, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.test_loss.reset_states() self.test_accuracy.reset_states() for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst)) ds = ds.batch(BATCH_SIZE) for mini_batch_test in ds: self.predict(mini_batch_test) print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result()) print('acc_0', self.num_0, self.accuracy_0.result()) print('acc_1', self.num_1, self.accuracy_1.result()) print('acc_2', self.num_2, self.accuracy_2.result()) print('acc_3', self.num_3, self.accuracy_3.result()) print('acc_4', self.num_4, self.accuracy_4.result()) print('acc_5', self.num_5, self.accuracy_5.result()) def run(self, matchup_dict, train_dict=None, valid_dict=None): with tf.device('/device:GPU:'+str(self.gpu_device)): self.setup_pipeline(matchup_dict, train_dict=train_dict, valid_test_dict=valid_dict) self.build_model() self.build_training() self.build_evaluation() self.do_training() def run_restore(self, matchup_dict, ckpt_dir): self.setup_pipeline(None, None, matchup_dict) self.build_model() self.build_training() self.build_evaluation() self.restore(ckpt_dir) if __name__ == "__main__": nn = CloudHeightNN() nn.run('matchup_filename')