import glob
import tensorflow as tf

import util.util
from util.setup import logdir, modeldir, cachepath, now, ancillary_path
from util.util import EarlyStop, normalize, denormalize, resample, resample_2d_linear, resample_one,\
    resample_2d_linear_one, get_grid_values_all, add_noise, smooth_2d, smooth_2d_single, median_filter_2d,\
    median_filter_2d_single, downscale_2x
import os, datetime
import numpy as np
import pickle
import h5py
from scipy.ndimage import gaussian_filter

# L1B M/I-bands: /apollo/cloud/scratch/cwhite/VIIRS_HRES/2019/2019_01_01/
# CLAVRx: /apollo/cloud/scratch/Satellite_Output/VIIRS_HRES/2019/2019_01_01/
# /apollo/cloud/scratch/Satellite_Output/andi/NEW/VIIRS_HRES/2019

LOG_DEVICE_PLACEMENT = False

PROC_BATCH_SIZE = 4
PROC_BATCH_BUFFER_SIZE = 50000

NumClasses = 5
if NumClasses == 2:
    NumLogits = 1
else:
    NumLogits = NumClasses

BATCH_SIZE = 128
NUM_EPOCHS = 80

TRACK_MOVING_AVERAGE = False
EARLY_STOP = True

NOISE_TRAINING = False
NOISE_STDDEV = 0.01
DO_AUGMENT = True

SIGMA = 1.0
DO_ZERO_OUT = False
DO_ESPCN = False  # Note: If True, cannot do mixed resolution input fields (Adjust accordingly below)

# setup scaling parameters dictionary
mean_std_dct = {}
mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l2 = pickle.load(f)
f.close()

mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l1b = pickle.load(f)
f.close()

mean_std_dct.update(mean_std_dct_l1b)
mean_std_dct.update(mean_std_dct_l2)

IMG_DEPTH = 1
# label_param = 'cloud_fraction'
# label_param = 'cld_opd_dcomp'
label_param = 'cloud_probability'

params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param]
params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param]
data_params_half = ['temp_11_0um_nom']
data_params_full = ['refl_0_65um_nom']

label_idx_i = params_i.index(label_param)
label_idx = params.index(label_param)

print('data_params_half: ', data_params_half)
print('data_params_full: ', data_params_full)
print('label_param: ', label_param)

KERNEL_SIZE = 3  # target size: (128, 128)
N = 1

if KERNEL_SIZE == 3:
    # slc_x = slice(2, N*128 + 4)
    # slc_y = slice(2, N*128 + 4)
    slc_x_2 = slice(1, N*128 + 6, 2)
    slc_y_2 = slice(1, N*128 + 6, 2)
    x_2 = np.arange(int((N*128)/2) + 3)
    y_2 = np.arange(int((N*128)/2) + 3)
    t = np.arange(0, int((N*128)/2) + 3, 0.5)
    s = np.arange(0, int((N*128)/2) + 3, 0.5)
    x_k = slice(1, N*128 + 3)
    y_k = slice(1, N*128 + 3)
    slc_x = slice(1, N*128 + 3)
    slc_y = slice(1, N*128 + 3)
    x_128 = slice(2, N*128 + 2)
    y_128 = slice(2, N*128 + 2)
elif KERNEL_SIZE == 5:
    slc_x = slice(3, 135)
    slc_y = slice(3, 135)
    slc_x_2 = slice(2, 137, 2)
    slc_y_2 = slice(2, 137, 2)
    x_128 = slice(5, 133)
    y_128 = slice(5, 133)
    t = np.arange(1, 67, 0.5)
    s = np.arange(1, 67, 0.5)
    x_2 = np.arange(68)
    y_2 = np.arange(68)
# ----------------------------------------
# Exp for ESPCN version
if DO_ESPCN:
    slc_x_2 = slice(0, 132, 2)
    slc_y_2 = slice(0, 132, 2)
    x_128 = slice(2, 130)
    y_128 = slice(2, 130)


def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME',
                                kernel_initializer='he_uniform', scale=None, kernel_size=3,
                                do_drop_out=True, drop_rate=0.5, do_batch_norm=True):

    with tf.name_scope(block_name):
        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv)
        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip)

        if scale is not None:
            skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip)

        if do_drop_out:
            skip = tf.keras.layers.Dropout(drop_rate)(skip)

        if do_batch_norm:
            skip = tf.keras.layers.BatchNormalization()(skip)

        conv = conv + skip
        print(block_name+':', conv.shape)

    return conv


def build_residual_block_conv2d_down2x(x_in, num_filters, activation, padding='SAME', drop_rate=0.5,
                                do_drop_out=True, do_batch_norm=True):
    skip = x_in

    conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(x_in)
    conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
    if do_drop_out:
        conv = tf.keras.layers.Dropout(drop_rate)(conv)
    if do_batch_norm:
        conv = tf.keras.layers.BatchNormalization()(conv)

    conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
    if do_drop_out:
        conv = tf.keras.layers.Dropout(drop_rate)(conv)
    if do_batch_norm:
        conv = tf.keras.layers.BatchNormalization()(conv)

    conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
    if do_drop_out:
        conv = tf.keras.layers.Dropout(drop_rate)(conv)
    if do_batch_norm:
        conv = tf.keras.layers.BatchNormalization()(conv)

    skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
    skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
    if do_drop_out:
        skip = tf.keras.layers.Dropout(drop_rate)(skip)
    if do_batch_norm:
        skip = tf.keras.layers.BatchNormalization()(skip)

    conv = conv + skip
    conv = tf.keras.layers.LeakyReLU()(conv)
    print(conv.shape)

    return conv


def upsample(tmp):
    tmp = tmp[:, 0:67, 0:67]
    tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
    tmp = tmp[:, y_k, x_k]
    return tmp


def upsample_nearest(grd):
    bsize, ylen, xlen = grd.shape
    up = np.zeros((bsize, ylen*2, xlen*2))

    up[:, 0::2, 0::2] = grd[:, 0::, 0::]
    up[:, 1::2, 0::2] = grd[:, 0::, 0::]
    up[:, 0::2, 1::2] = grd[:, 0::, 0::]
    up[:, 1::2, 1::2] = grd[:, 0::, 0::]

    up = up[:, y_k, x_k]

    return up


def upsample_mean(grd):
    bsize, ylen, xlen = grd.shape
    grd = get_grid_cell_mean(grd)
    up = np.zeros((bsize, ylen, xlen))

    up[:, ::2, ::2] = grd[:, :, :]
    up[:, 1::2, ::2] = grd[:, :, :]
    up[:, ::2, 1::2] = grd[:, :, :]
    up[:, 1::2, 1::2] = grd[:, :, :]

    return up


def get_grid_cell_mean(grd_k):
    grd_k = np.where(np.isnan(grd_k), 0, grd_k)

    a = grd_k[:, 0::2, 0::2]
    b = grd_k[:, 1::2, 0::2]
    c = grd_k[:, 0::2, 1::2]
    d = grd_k[:, 1::2, 1::2]
    s = a + b + c + d
    s /= 4.0

    return s


def get_min_max_std(grd_k):
    a = grd_k[:, 0::2, 0::2]
    b = grd_k[:, 1::2, 0::2]
    c = grd_k[:, 0::2, 1::2]
    d = grd_k[:, 1::2, 1::2]

    lo = np.nanmin([a[:, ], b[:, ], c[:, ], d[:, ]])
    hi = np.nanmax([a[:, ], b[:, ], c[:, ], d[:, ]])
    std = np.nanstd([a[:, ], b[:, ], c[:, ], d[:, ]])

    lo = np.where(np.isnan(lo), lo)
    hi = np.where(np.isnan(hi), hi)
    std = np.where(np.isnan(std), std)

    return lo, hi, std


def get_label_data(grd_k):
    grd_k = np.where(np.isnan(grd_k), 0, grd_k)
    grd_k = np.where(grd_k < 0.50, 0, 1)

    a = grd_k[:, 0::2, 0::2]
    b = grd_k[:, 1::2, 0::2]
    c = grd_k[:, 0::2, 1::2]
    d = grd_k[:, 1::2, 1::2]
    s = a + b + c + d

    cat_0 = (s == 0)
    cat_1 = np.logical_and(s > 0, s < 4)
    cat_2 = (s == 4)
    s[cat_0] = 0
    s[cat_1] = 1
    s[cat_2] = 2

    return s


def get_label_data_5cat(grd_k):
    grd_k = np.where(np.isnan(grd_k), 0, grd_k)
    grd_k = np.where(grd_k < 0.5, 0, 1)

    a = grd_k[:, 0::2, 0::2]
    b = grd_k[:, 1::2, 0::2]
    c = grd_k[:, 0::2, 1::2]
    d = grd_k[:, 1::2, 1::2]
    s = a + b + c + d

    cat_0 = (s == 0)
    cat_1 = (s == 1)
    cat_2 = (s == 2)
    cat_3 = (s == 3)
    cat_4 = (s == 4)

    s[cat_0] = 0
    s[cat_1] = 1
    s[cat_2] = 2
    s[cat_3] = 3
    s[cat_4] = 4

    return s

class SRCNN:
    
    def __init__(self):

        self.train_data = None
        self.train_label = None
        self.test_data = None
        self.test_label = None
        self.test_data_denorm = None
        
        self.train_dataset = None
        self.inner_train_dataset = None
        self.test_dataset = None
        self.eval_dataset = None
        self.X_img = None
        self.X_prof = None
        self.X_u = None
        self.X_v = None
        self.X_sfc = None
        self.inputs = []
        self.y = None
        self.handle = None
        self.inner_handle = None
        self.in_mem_batch = None

        self.h5f_l1b_trn = None
        self.h5f_l1b_tst = None
        self.h5f_l2_trn = None
        self.h5f_l2_tst = None

        self.logits = None

        self.predict_data = None
        self.predict_dataset = None
        self.mean_list = None
        self.std_list = None
        
        self.training_op = None
        self.correct = None
        self.accuracy = None
        self.loss = None
        self.pred_class = None
        self.variable_averages = None

        self.global_step = None

        self.writer_train = None
        self.writer_valid = None
        self.writer_train_valid_loss = None

        self.OUT_OF_RANGE = False

        self.abi = None
        self.temp = None
        self.wv = None
        self.lbfp = None
        self.sfc = None

        self.in_mem_data_cache = {}
        self.in_mem_data_cache_test = {}

        self.model = None
        self.optimizer = None
        self.ema = None
        self.train_loss = None
        self.train_accuracy = None
        self.test_loss = None
        self.test_accuracy = None
        self.test_auc = None
        self.test_recall = None
        self.test_precision = None
        self.test_confusion_matrix = None
        self.test_true_pos = None
        self.test_true_neg = None
        self.test_false_pos = None
        self.test_false_neg = None

        self.test_labels = []
        self.test_preds = []
        self.test_probs = None

        self.learningRateSchedule = None
        self.num_data_samples = None
        self.initial_learning_rate = None

        self.data_dct = None
        self.train_data_files = None
        self.train_label_files = None
        self.test_data_files = None
        self.test_label_files = None

        self.train_data_nda = None
        self.train_label_nda = None
        self.test_data_nda = None
        self.test_label_nda = None

        self.n_chans = len(data_params_half) + len(data_params_full) + 1

        self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))

        self.inputs.append(self.X_img)

        tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)

    def get_in_mem_data_batch(self, idxs, is_training):
        if is_training:
            data_files = self.train_data_files
            label_files = self.train_label_files
        else:
            data_files = self.test_data_files
            label_files = self.test_label_files

        data_s = []
        label_s = []
        for k in idxs:
            f = data_files[k]
            nda = np.load(f)
            data_s.append(nda)

            f = label_files[k]
            nda = np.load(f)
            label_s.append(nda)
        input_data = np.concatenate(data_s)
        input_label = np.concatenate(label_s)

        data_norm = []
        for param in data_params_half:
            idx = params.index(param)
            tmp = input_data[:, idx, :, :]
            tmp = tmp.copy()
            tmp = np.where(np.isnan(tmp), 0, tmp)
            if DO_ESPCN:
                tmp = tmp[:, slc_y_2, slc_x_2]
            else:  # Half res upsampled to full res:
                tmp = upsample(tmp)
            tmp = normalize(tmp, param, mean_std_dct)
            data_norm.append(tmp)

        for param in data_params_full:
            idx = params_i.index(param)
            tmp = input_label[:, idx, :, :]
            tmp = tmp.copy()
            tmp = np.where(np.isnan(tmp), 0, tmp)
            tmp = tmp[:, slc_y, slc_x]
            tmp = normalize(tmp, param, mean_std_dct)
            data_norm.append(tmp)
        # ---------------------------------------------------
        tmp = input_data[:, label_idx, :, :]
        tmp = tmp.copy()
        tmp = np.where(np.isnan(tmp), 0, tmp)
        if DO_ESPCN:
            tmp = tmp[:, slc_y_2, slc_x_2]
        else:  # Half res upsampled to full res:
            tmp = upsample_nearest(tmp)
        if label_param != 'cloud_probability':
            tmp = normalize(tmp, label_param, mean_std_dct)
        data_norm.append(tmp)
        # ---------
        data = np.stack(data_norm, axis=3)
        data = data.astype(np.float32)
        # -----------------------------------------------------
        # -----------------------------------------------------
        label = input_label[:, label_idx_i, :, :]
        label = label.copy()
        label = label[:, y_128, x_128]
        if NumClasses == 5:
            label = get_label_data_5cat(label)
        else:
            label = get_label_data(label)

        if label_param != 'cloud_probability':
            label = normalize(label, label_param, mean_std_dct)
        else:
            label = np.where(np.isnan(label), 0, label)
        label = np.expand_dims(label, axis=3)

        data = data.astype(np.float32)
        label = label.astype(np.float32)

        if is_training and DO_AUGMENT:
            data_ud = np.flip(data, axis=1)
            label_ud = np.flip(label, axis=1)

            data_lr = np.flip(data, axis=2)
            label_lr = np.flip(label, axis=2)

            data = np.concatenate([data, data_ud, data_lr])
            label = np.concatenate([label, label_ud, label_lr])

        return data, label

    def get_in_mem_data_batch_train(self, idxs):
        return self.get_in_mem_data_batch(idxs, True)

    def get_in_mem_data_batch_test(self, idxs):
        return self.get_in_mem_data_batch(idxs, False)

    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
    def data_function(self, indexes):
        out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32])
        return out

    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
    def data_function_test(self, indexes):
        out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32])
        return out

    def get_train_dataset(self, indexes):
        indexes = list(indexes)

        dataset = tf.data.Dataset.from_tensor_slices(indexes)
        dataset = dataset.batch(PROC_BATCH_SIZE)
        dataset = dataset.map(self.data_function, num_parallel_calls=8)
        dataset = dataset.cache()
        if DO_AUGMENT:
            dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
        dataset = dataset.prefetch(buffer_size=1)
        self.train_dataset = dataset

    def get_test_dataset(self, indexes):
        indexes = list(indexes)

        dataset = tf.data.Dataset.from_tensor_slices(indexes)
        dataset = dataset.batch(PROC_BATCH_SIZE)
        dataset = dataset.map(self.data_function_test, num_parallel_calls=8)
        dataset = dataset.cache()
        self.test_dataset = dataset

    def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
        self.train_data_files = train_data_files
        self.train_label_files = train_label_files
        self.test_data_files = test_data_files
        self.test_label_files = test_label_files

        trn_idxs = np.arange(len(train_data_files))
        np.random.shuffle(trn_idxs)
        tst_idxs = np.arange(len(test_data_files))

        self.get_train_dataset(trn_idxs)
        self.get_test_dataset(tst_idxs)

        self.num_data_samples = num_train_samples  # approximately

        print('datetime: ', now)
        print('training and test data: ')
        print('---------------------------')
        print('num train samples: ', self.num_data_samples)
        print('BATCH SIZE: ', BATCH_SIZE)
        print('num test samples: ', tst_idxs.shape[0])
        print('setup_pipeline: Done')

    def setup_test_pipeline(self, test_data_files, test_label_files):
        self.test_data_files = test_data_files
        self.test_label_files = test_label_files

        tst_idxs = np.arange(len(test_data_files))
        self.get_test_dataset(tst_idxs)
        print('setup_test_pipeline: Done')

    def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2):
        print('build_cnn')
        padding = "SAME"

        # activation = tf.nn.relu
        # activation = tf.nn.elu
        activation = tf.nn.relu
        momentum = 0.99

        num_filters = 64

        input_2d = self.inputs[0]
        print('input: ', input_2d.shape)

        conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d)
        print(conv.shape)

        # if NOISE_TRAINING:
        #     conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)

        scale = 0.2

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_block_conv2d_down2x(conv_b, num_filters, activation)

        conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b)

        # conv = conv + conv_b
        conv = conv_b
        print(conv.shape)

        if NumClasses == 2:
            final_activation = tf.nn.sigmoid  # For binary
        else:
            final_activation = tf.nn.softmax  # For multi-class

        if not DO_ESPCN:
            # This is effectively a Dense layer
            self.logits = tf.keras.layers.Conv2D(NumLogits, kernel_size=1, strides=1, padding=padding, activation=final_activation)(conv)
        else:
            conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding=padding, activation=activation)(conv)
            print(conv.shape)
            conv = tf.nn.depth_to_space(conv, factor)
            print(conv.shape)
            self.logits = tf.keras.layers.Conv2D(IMG_DEPTH, kernel_size=3, strides=1, padding=padding, activation=final_activation)(conv)
        print(self.logits.shape)

    def build_training(self):
        if NumClasses == 2:
            self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False)  # for two-class only
        else:
            self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)  # For multi-class
        # self.loss = tf.keras.losses.MeanAbsoluteError()  # Regression

        # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
        initial_learning_rate = 0.002
        decay_rate = 0.95
        steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
        decay_steps = int(steps_per_epoch) * 4
        print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)

        self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)

        optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)

        if TRACK_MOVING_AVERAGE:
            # Not really sure this works properly (from tfa)
            # optimizer = tfa.optimizers.MovingAverage(optimizer)
            self.ema = tf.train.ExponentialMovingAverage(decay=0.9999)

        self.optimizer = optimizer
        self.initial_learning_rate = initial_learning_rate

    def build_evaluation(self):
        self.train_loss = tf.keras.metrics.Mean(name='train_loss')
        self.test_loss = tf.keras.metrics.Mean(name='test_loss')

        if NumClasses == 2:
            self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
            self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
            self.test_auc = tf.keras.metrics.AUC(name='test_auc')
            self.test_recall = tf.keras.metrics.Recall(name='test_recall')
            self.test_precision = tf.keras.metrics.Precision(name='test_precision')
            self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg')
            self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos')
            self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg')
            self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos')
        else:
            self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
            self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')

    @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
    def train_step(self, inputs, labels):
        labels = tf.squeeze(labels, axis=[3])
        with tf.GradientTape() as tape:
            pred = self.model([inputs], training=True)
            loss = self.loss(labels, pred)
            total_loss = loss
            if len(self.model.losses) > 0:
                reg_loss = tf.math.add_n(self.model.losses)
                total_loss = loss + reg_loss
        gradients = tape.gradient(total_loss, self.model.trainable_variables)
        self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
        if TRACK_MOVING_AVERAGE:
            self.ema.apply(self.model.trainable_variables)

        self.train_loss(loss)
        self.train_accuracy(labels, pred)

        return loss

    @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
    def test_step(self, inputs, labels):
        labels = tf.squeeze(labels, axis=[3])
        pred = self.model([inputs], training=False)
        t_loss = self.loss(labels, pred)

        self.test_loss(t_loss)
        self.test_accuracy(labels, pred)

    # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
    # decorator commented out because pred.numpy(): pred not evaluated yet.
    def predict(self, inputs, labels):
        pred = self.model([inputs], training=False)
        # t_loss = self.loss(tf.squeeze(labels), pred)
        t_loss = self.loss(labels, pred)

        self.test_labels.append(labels)
        self.test_preds.append(pred.numpy())

        self.test_loss(t_loss)
        self.test_accuracy(labels, pred)

    def reset_test_metrics(self):
        self.test_loss.reset_states()
        self.test_accuracy.reset_states()

    def get_metrics(self):
        recall = self.test_recall.result()
        precsn = self.test_precision.result()
        f1 = 2 * (precsn * recall) / (precsn + recall)

        tn = self.test_true_neg.result()
        tp = self.test_true_pos.result()
        fn = self.test_false_neg.result()
        fp = self.test_false_pos.result()

        mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
        return f1, mcc

    def do_training(self, ckpt_dir=None):

        if ckpt_dir is None:
            if not os.path.exists(modeldir):
                os.mkdir(modeldir)
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
        else:
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
            ckpt.restore(ckpt_manager.latest_checkpoint)

        self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
        self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
        self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss'))

        step = 0
        total_time = 0
        best_test_loss = np.finfo(dtype=np.float).max

        if EARLY_STOP:
            es = EarlyStop()

        for epoch in range(NUM_EPOCHS):
            self.train_loss.reset_states()
            self.train_accuracy.reset_states()

            t0 = datetime.datetime.now().timestamp()

            proc_batch_cnt = 0
            n_samples = 0

            for data, label in self.train_dataset:
                trn_ds = tf.data.Dataset.from_tensor_slices((data, label))
                trn_ds = trn_ds.batch(BATCH_SIZE)
                for mini_batch in trn_ds:
                    if self.learningRateSchedule is not None:
                        loss = self.train_step(mini_batch[0], mini_batch[1])

                    if (step % 100) == 0:

                        with self.writer_train.as_default():
                            tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                            tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step)
                            tf.summary.scalar('num_train_steps', step, step=step)
                            tf.summary.scalar('num_epochs', epoch, step=step)

                        self.reset_test_metrics()
                        for data_tst, label_tst in self.test_dataset:
                            tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst))
                            tst_ds = tst_ds.batch(BATCH_SIZE)
                            for mini_batch_test in tst_ds:
                                self.test_step(mini_batch_test[0], mini_batch_test[1])

                        with self.writer_valid.as_default():
                            tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                            tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)

                        with self.writer_train_valid_loss.as_default():
                            tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                            tf.summary.scalar('loss_val', self.test_loss.result(), step=step)

                        print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
                              self.optimizer._decayed_lr('float32').numpy())

                    step += 1
                    print('train loss: ', loss.numpy())

                proc_batch_cnt += 1
                n_samples += data.shape[0]
                print('proc_batch_cnt: ', proc_batch_cnt, n_samples)

            t1 = datetime.datetime.now().timestamp()
            print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
            total_time += (t1-t0)

            self.reset_test_metrics()
            for data, label in self.test_dataset:
                ds = tf.data.Dataset.from_tensor_slices((data, label))
                ds = ds.batch(BATCH_SIZE)
                for mini_batch in ds:
                    self.test_step(mini_batch[0], mini_batch[1])

            print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
            print('------------------------------------------------------')

            tst_loss = self.test_loss.result().numpy()
            if tst_loss < best_test_loss:
                best_test_loss = tst_loss
                ckpt_manager.save()

            if EARLY_STOP and es.check_stop(tst_loss):
                break

        print('total time: ', total_time)
        self.writer_train.close()
        self.writer_valid.close()
        self.writer_train_valid_loss.close()

    def build_model(self):
        self.build_srcnn()
        self.model = tf.keras.Model(self.inputs, self.logits)

    def restore(self, ckpt_dir):

        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
        ckpt.restore(ckpt_manager.latest_checkpoint)

        self.reset_test_metrics()

        for data, label in self.test_dataset:
            ds = tf.data.Dataset.from_tensor_slices((data, label))
            ds = ds.batch(BATCH_SIZE)
            for mini_batch_test in ds:
                self.predict(mini_batch_test)

        print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())

        labels = np.concatenate(self.test_labels)
        preds = np.concatenate(self.test_preds)
        print(labels.shape, preds.shape)

        # if label_param != 'cloud_probability':
        #     labels_denorm = denormalize(labels, label_param, mean_std_dct)
        #     preds_denorm = denormalize(preds, label_param, mean_std_dct)

        return labels, preds

    def do_evaluate(self, data, ckpt_dir):

        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
        ckpt.restore(ckpt_manager.latest_checkpoint)

        self.reset_test_metrics()

        pred = self.model([data], training=False)
        self.test_probs = pred
        pred = pred.numpy()
        if label_param != 'cloud_probability':
            pred = denormalize(pred, label_param, mean_std_dct)

        return pred

    def run(self, directory, ckpt_dir=None, num_data_samples=50000):
        train_data_files = glob.glob(directory+'train*mres*.npy')
        valid_data_files = glob.glob(directory+'valid*mres*.npy')
        train_label_files = glob.glob(directory+'train*ires*.npy')
        valid_label_files = glob.glob(directory+'valid*ires*.npy')

        self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
        self.build_model()
        self.build_training()
        self.build_evaluation()
        self.do_training(ckpt_dir=ckpt_dir)

    def run_restore(self, directory, ckpt_dir):
        self.num_data_samples = 1000

        valid_data_files = glob.glob(directory + 'valid*mres*.npy')
        valid_label_files = glob.glob(directory + 'valid*ires*.npy')
        self.setup_test_pipeline(valid_data_files, valid_label_files)

        self.build_model()
        self.build_training()
        self.build_evaluation()
        return self.restore(ckpt_dir)

    def run_evaluate(self, data, ckpt_dir):
        data = tf.convert_to_tensor(data, dtype=tf.float32)
        self.num_data_samples = 80000
        self.build_model()
        self.build_training()
        self.build_evaluation()
        return self.do_evaluate(data, ckpt_dir)


def run_restore_static(directory, ckpt_dir, out_file=None):
    nn = SRCNN()
    labels, preds = nn.run_restore(directory, ckpt_dir)
    if out_file is not None:
        np.save(out_file,
                [np.squeeze(labels), preds.argmax(axis=3), preds[:, :, :, 0], preds[:, :, :, 1], preds[:, :, :, 2]])


def run_evaluate_static(in_file, out_file, ckpt_dir):
    N = 10

    slc_x = slice(2, N*128 + 4)
    slc_y = slice(2, N*128 + 4)
    slc_x_2 = slice(1, N*128 + 6, 2)
    slc_y_2 = slice(1, N*128 + 6, 2)
    x_2 = np.arange(int((N*128)/2) + 3)
    y_2 = np.arange(int((N*128)/2) + 3)
    t = np.arange(0, int((N*128)/2) + 3, 0.5)
    s = np.arange(0, int((N*128)/2) + 3, 0.5)
    x_k = slice(1, N*128 + 3)
    y_k = slice(1, N*128 + 3)
    x_128 = slice(3, N*128 + 3)
    y_128 = slice(3, N*128 + 3)

    sub_y, sub_x = (N * 128) + 10, (N * 128) + 10
    y_0, x_0, = 3232 - int(sub_y/2), 3200 - int(sub_x/2)

    h5f = h5py.File(in_file, 'r')

    grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom')
    grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x]
    grd_a = grd_a.copy()
    grd_a = np.where(np.isnan(grd_a), 0, grd_a)
    hr_grd_a = grd_a.copy()
    hr_grd_a = hr_grd_a[y_128, x_128]
    # Full res:
    # grd_a = grd_a[slc_y, slc_x]
    # Half res:
    grd_a = grd_a[slc_y_2, slc_x_2]
    grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s)
    grd_a = grd_a[y_k, x_k]
    grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
    # ------------------------------------------------------
    grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
    grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
    grd_b = grd_b.copy()
    grd_b = np.where(np.isnan(grd_b), 0, grd_b)
    hr_grd_b = grd_b.copy()
    hr_grd_b = hr_grd_b[y_128, x_128]
    grd_b = grd_b[slc_y, slc_x]
    grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)

    grd_c = get_grid_values_all(h5f, label_param)
    grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x]
    hr_grd_c = grd_c.copy()
    hr_grd_c = np.where(np.isnan(hr_grd_c), 0, grd_c)
    hr_grd_c = hr_grd_c[y_128, x_128]
    # hr_grd_c = smooth_2d_single(hr_grd_c, sigma=1.0)
    grd_c = np.where(np.isnan(grd_c), 0, grd_c)
    grd_c = grd_c.copy()
    # grd_c = smooth_2d_single(grd_c, sigma=1.0)
    grd_c = grd_c[slc_y_2, slc_x_2]
    grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s)
    grd_c = grd_c[y_k, x_k]
    if label_param != 'cloud_probability':
        grd_c = normalize(grd_c, label_param, mean_std_dct)

    data = np.stack([grd_a, grd_b, grd_c], axis=2)
    data = np.expand_dims(data, axis=0)

    h5f.close()

    nn = SRCNN()
    out_sr = nn.run_evaluate(data, ckpt_dir)
    if out_file is not None:
        np.save(out_file, (out_sr[0, :, :, 0], hr_grd_a, hr_grd_b, hr_grd_c))
    else:
        return out_sr, hr_grd_a, hr_grd_b, hr_grd_c


def analyze(file='/Users/tomrink/cld_opd_out.npy'):
    # Save this:
    # nn.test_data_files = glob.glob('/Users/tomrink/data/clavrx_opd_valid_DAY/data_valid*.npy')
    # idxs = np.arange(50)
    # dat, lbl = nn.get_in_mem_data_batch(idxs, False)
    # tmp = dat[:, 1:128, 1:128, 1]
    # tmp = dat[:, 1:129, 1:129, 1]

    tup = np.load(file, allow_pickle=True)
    lbls = tup[0]
    pred = tup[1]

    lbls = lbls[:, :, :, 0]
    pred = pred[:, :, :, 0]
    print('Total num pixels: ', lbls.size)

    pred = pred.flatten()
    pred = np.where(pred < 0.0, 0.0, pred)
    lbls = lbls.flatten()
    diff = pred - lbls

    mae = (np.sum(np.abs(diff))) / diff.size
    print('MAE: ', mae)

    bin_edges = []
    bin_ranges = []

    bin_ranges.append([0.0, 5.0])
    bin_edges.append(0.0)

    bin_ranges.append([5.0, 10.0])
    bin_edges.append(5.0)

    bin_ranges.append([10.0, 15.0])
    bin_edges.append(10.0)

    bin_ranges.append([15.0, 20.0])
    bin_edges.append(15.0)

    bin_ranges.append([20.0, 30.0])
    bin_edges.append(20.0)

    bin_ranges.append([30.0, 40.0])
    bin_edges.append(30.0)

    bin_ranges.append([40.0, 60.0])
    bin_edges.append(40.0)

    bin_ranges.append([60.0, 80.0])
    bin_edges.append(60.0)

    bin_ranges.append([80.0, 100.0])
    bin_edges.append(80.0)

    bin_ranges.append([100.0, 120.0])
    bin_edges.append(100.0)

    bin_ranges.append([120.0, 140.0])
    bin_edges.append(120.0)

    bin_ranges.append([140.0, 160.0])
    bin_edges.append(140.0)

    bin_edges.append(160.0)

    diff_by_value_bins = util.util.bin_data_by(diff, lbls, bin_ranges)

    values = []
    for k in range(len(bin_ranges)):
        diff_k = diff_by_value_bins[k]
        mae_k = (np.sum(np.abs(diff_k)) / diff_k.size)
        values.append(int(mae_k/bin_ranges[k][1] * 100.0))

        print('MAE: ', diff_k.size, bin_ranges[k], mae_k)

    return np.array(values), bin_edges


def analyze2(nda_m, nda_i):
    n_imgs = nda_m.shape[0]
    nda_m = np.where(nda_m < 0.5, 0, 1)
    nda_i = np.where(nda_i < 0.5, 0, 1)

    cf_m = np.zeros((n_imgs, 64, 64))
    cf_i = np.zeros((n_imgs, 64, 64))

    for k in range(n_imgs):
        for j in range(1, 65):
            for i in range(1, 65):
                sub_3x3 = nda_m[k, j-1:j+2, i-1:i+2]
                cf_m[k, j-1, i-1] = np.sum(sub_3x3)

                sub_4x4 = nda_i[k, j*2-1:j*2+3, i*2-1:i*2+3]
                cf_i[k, j-1, i-1] = np.sum(sub_4x4)

    for k in range(n_imgs):
        cat_0 = (cf_m[k, ] == 0)
        cat_1 = (cf_m[k, ] > 0) & (cf_m[k, ] < 9)
        cat_2 = cf_m[k, ] == 9

        cf_m[k, cat_0] = 0
        cf_m[k, cat_1] = 1
        cf_m[k, cat_2] = 2

        cat_0 = (cf_i[k, ] == 0)
        cat_1 = (cf_i[k, ] > 0) & (cf_i[k, ] < 16)
        cat_2 = cf_i[k, ] == 16

        cf_i[k, cat_0] = 0
        cf_i[k, cat_1] = 1
        cf_i[k, cat_2] = 2

    return cf_m, cf_i


if __name__ == "__main__":
    nn = SRCNN()
    nn.run('matchup_filename')