import numpy as np import h5py from util.util import get_grid_values, is_day import glob keep_out_opd = ['/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/arm/2019/11/02/clavrx_VNP02IMG.A2019306.1912.001.2019307003236.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/arm/2019/04/13/clavrx_VNP02IMG.A2019103.1918.001.2019104005120.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/sioux_falls/2019/05/25/clavrx_VNP02IMG.A2019145.1936.001.2019146005424.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/sioux_falls/2019/11/01/clavrx_VNP02IMG.A2019305.1936.001.2019306005913.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/sioux_falls/2019/03/01/clavrx_VNP02IMG.A2019060.1930.001.2019061005942.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/table_mountain/2019/12/01/clavrx_VNP02IMG.A2019335.2012.001.2019336013827.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/table_mountain/2019/05/18/clavrx_VNP02IMG.A2019138.2006.001.2019139013059.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/fort_peck/2019/01/28/clavrx_VNP02IMG.A2019028.1930.001.2019029005408.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/fort_peck/2019/08/08/clavrx_VNP02IMG.A2019220.1930.001.2019221010714.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/madison/2019/10/13/clavrx_VNP02IMG.A2019286.1848.001.2019287001722.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/madison/2019/03/20/clavrx_VNP02IMG.A2019079.1830.001.2019079235918.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/madison/2019/12/26/clavrx_VNP02IMG.A2019360.1900.001.2019361001327.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/desert_rock/2019/02/05/clavrx_VNP02IMG.A2019036.2018.001.2019037030301.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/desert_rock/2019/03/30/clavrx_VNP02IMG.A2019089.2024.001.2019090015614.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/bondville_il/2019/11/03/clavrx_VNP02IMG.A2019307.1854.001.2019308001716.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/goodwin_creek/2019/04/15/clavrx_VNP02IMG.A2019105.1842.001.2019106001003.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/penn_state/2019/07/18/clavrx_VNP02IMG.A2019199.1742.001.2019199230925.uwssec.nc', '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/penn_state/2019/02/02/clavrx_VNP02IMG.A2019033.1754.001.2019034011318.uwssec.nc'] keep_out = keep_out_opd # target_param = 'cloud_probability' target_param = 'cld_opd_dcomp' group_name_i = 'super/' group_name_m = 'orig/' solzen_name = group_name_m + 'solar_zenith' params_i = [group_name_i+'temp_11_0um', group_name_i+'refl_0_65um', group_name_i+target_param] params_m = [group_name_m+'temp_11_0um', group_name_m+'refl_0_65um', group_name_m+target_param] param_idx_m = params_m.index(group_name_m + target_param) param_idx_i = params_i.index(group_name_i + target_param) def is_missing(p_idx, tile): keep = np.invert(np.isnan(tile[p_idx, ])) if np.sum(keep) / keep.size < 0.98: return True def keep_tile(p_idx, tile): grd_k = tile[p_idx, ].copy() if target_param == 'cloud_probability': grd_k = process_cld_prob(grd_k) elif target_param == 'cld_opd_dcomp': grd_k = process_cld_opd(grd_k) if grd_k is not None: tile[p_idx, ] = grd_k return tile else: return None def process_cld_prob(grd_k): keep = np.invert(np.isnan(grd_k)) num_keep = np.sum(keep) keep_clr = np.where(keep, grd_k < 0.30, False) keep_cld = np.where(keep, grd_k > 0.70, False) frac_clr = np.sum(keep_clr)/num_keep frac_cld = np.sum(keep_cld)/num_keep if not (frac_clr >= 0.20 and frac_cld >= 0.20): return None grd_k = np.where(np.invert(keep), 0, grd_k) # Convert NaN to 0 return grd_k def process_cld_opd(grd_k): keep = np.invert(np.isnan(grd_k)) num_keep = np.sum(keep) keep_cld = np.where(keep, np.logical_and(0.1 < grd_k, grd_k < 158.0), False) # keep_cld = np.where(keep, (0.1 < grd_k), False) frac_cld = np.sum(keep_cld)/num_keep # if not (0.50 < frac_cld < 0.85): if not (0.25 < frac_cld < 1.0): return None grd_k = np.where(np.invert(keep), 0, grd_k) # Convert NaN to 0 return grd_k def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', start=10): cnt = start total_num_train_samples = 0 total_num_valid_samples = 0 num_keep_x_tiles = 14 path = directory + '**' + '/' + pattern all_files = glob.glob(path, recursive=True) data_files = [f for f in all_files if f not in keep_out] valid_tiles_i = [] train_tiles_i = [] valid_tiles_m = [] train_tiles_m = [] f_cnt = 0 num_files = len(data_files) print('Start, number of files: ', num_files) total_num_not_missing = 0 hist_accum_valid_i = np.zeros(20, dtype=np.int64) hist_accum_valid_m = np.zeros(20, dtype=np.int64) hist_accum_train_i = np.zeros(20, dtype=np.int64) hist_accum_train_m = np.zeros(20, dtype=np.int64) for idx, data_f in enumerate(data_files): # if idx % 4 == 0: # if we want to skip some files if True: try: h5f = h5py.File(data_f, 'r') except: print('cant open file: ', data_f) continue try: num_not_missing = run(h5f, params_m, train_tiles_m, valid_tiles_m, params_i, train_tiles_i, valid_tiles_i, num_keep_x_tiles=num_keep_x_tiles, tile_width=64, kernel_size=7, factor=2, day_night=day_night) except Exception as e: print(e) h5f.close() continue print(data_f) f_cnt += 1 h5f.close() total_num_not_missing += num_not_missing if len(train_tiles_m) == 0 and len(valid_tiles_m) == 0: continue if (f_cnt % 20) == 0: num_valid_samples = 0 if len(valid_tiles_m) > 0: valid_i = np.stack(valid_tiles_i) valid_m = np.stack(valid_tiles_m) np.save(out_directory + 'valid_mres_' + str(cnt), valid_m) np.save(out_directory + 'valid_ires_' + str(cnt), valid_i) num_valid_samples = valid_m.shape[0] h, b = np.histogram(valid_i.flatten(), bins=20, range=[0.0, 160.0]) hist_accum_valid_i += h h, b = np.histogram(valid_m.flatten(), bins=20, range=[0.0, 160.0]) hist_accum_valid_m += h num_train_samples = 0 if len(train_tiles_m) > 0: train_i = np.stack(train_tiles_i) train_m = np.stack(train_tiles_m) np.save(out_directory + 'train_ires_' + str(cnt), train_i) np.save(out_directory + 'train_mres_' + str(cnt), train_m) num_train_samples = train_m.shape[0] h, b = np.histogram(train_i.flatten(), bins=20, range=[0.0, 160.0]) hist_accum_train_i += h h, b = np.histogram(train_m.flatten(), bins=20, range=[0.0, 160.0]) hist_accum_train_m += h valid_tiles_i = [] train_tiles_i = [] valid_tiles_m = [] train_tiles_m = [] print(' num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt/num_files)*100)) total_num_train_samples += num_train_samples total_num_valid_samples += num_valid_samples print('total_num_train_samples, total_num_valid_samples, total_num_not_missing: ', total_num_train_samples, total_num_valid_samples, total_num_not_missing) print('--------------------------------------------------') cnt += 1 # Write out leftover, if any. Maybe make this better someday num_valid_samples = 0 if len(valid_tiles_m) > 0: valid_i = np.stack(valid_tiles_i) valid_m = np.stack(valid_tiles_m) np.save(out_directory + 'valid_mres_' + str(cnt), valid_m) np.save(out_directory + 'valid_ires_' + str(cnt), valid_i) num_valid_samples = valid_m.shape[0] h, b = np.histogram(valid_i.flatten(), bins=20, range=[0.0, 160.0]) hist_accum_valid_i += h h, b = np.histogram(valid_m.flatten(), bins=20, range=[0.0, 160.0]) hist_accum_valid_m += h num_train_samples = 0 if len(train_tiles_m) > 0: train_i = np.stack(train_tiles_i) train_m = np.stack(train_tiles_m) np.save(out_directory + 'train_ires_' + str(cnt), train_i) np.save(out_directory + 'train_mres_' + str(cnt), train_m) num_train_samples = train_m.shape[0] h, b = np.histogram(train_i.flatten(), bins=20, range=[0.0, 160.0]) hist_accum_train_i += h h, b = np.histogram(train_m.flatten(), bins=20, range=[0.0, 160.0]) hist_accum_train_m += h print(' num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt / num_files) * 100)) total_num_train_samples += num_train_samples total_num_valid_samples += num_valid_samples print('total_num_train_samples, total_num_valid_samples, total_num_not_missing: ', total_num_train_samples, total_num_valid_samples, total_num_not_missing) print('--------------------------------------------------') print('** total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples) print('--------------------------------------------------') print(hist_accum_train_i) print('----------') print(hist_accum_train_m) print('----------') print(hist_accum_valid_i) print('----------') print(hist_accum_valid_m) # tile_width: Must be even! # kernel_size: Must be odd! def run(h5f, params_m, train_tiles_m, valid_tiles_m, params_i, train_tiles_i, valid_tiles_i, num_keep_x_tiles=8, tile_width=64, kernel_size=3, factor=2, day_night='ANY'): border = int((kernel_size - 1)/2) + 1 # Need to add for interpolation with no edge effects param_name = params_m[0] num_lines = h5f[param_name].shape[0] num_pixels = h5f[param_name].shape[1] # Must be even if day_night != 'ANY': solzen = get_grid_values(h5f, solzen_name, 0, 0, None, num_lines, num_pixels) grd_s = [] for param in params_m: try: grd = get_grid_values(h5f, param, 0, 0, None, num_lines, num_pixels) grd_s.append(grd) except Exception as e: print(e) return data_m = np.stack(grd_s) grd_s = [] for param in params_i: try: grd = get_grid_values(h5f, param, 0, 0, None, num_lines*factor, num_pixels*factor) grd_s.append(grd) except Exception as e: print(e) return data_i = np.stack(grd_s) tile_width += 2 * border i_skip = tile_width j_skip = tile_width i_start = int(num_pixels / 2) - int((num_keep_x_tiles * tile_width) / 2) j_start = 0 num_y_tiles = int(num_lines / tile_width) - 1 data_tiles_m = [] data_tiles_i = [] num_not_missing = 0 for j in range(num_y_tiles): j_a = j_start + j * j_skip j_b = j_a + tile_width for i in range(num_keep_x_tiles): i_a = i_start + i * i_skip i_b = i_a + tile_width if day_night == 'DAY' and not is_day(solzen[j_a:j_b, i_a:i_b]): continue elif day_night == 'NIGHT' and is_day(solzen[j_a:j_b, i_a:i_b]): continue nda_m = data_m[:, j_a:j_b, i_a:i_b] nda_i = data_i[:, j_a*factor:j_b*factor, i_a*factor:i_b*factor] if is_missing(param_idx_i, nda_i): continue num_not_missing += 1 nda_i = keep_tile(param_idx_i, nda_i) if nda_i is not None: data_tiles_m.append(nda_m) data_tiles_i.append(nda_i) num_tiles = len(data_tiles_i) num_valid = int(num_tiles * 0.10) num_train = num_tiles - num_valid for k in range(num_train): train_tiles_m.append(data_tiles_m[k]) train_tiles_i.append(data_tiles_i[k]) for k in range(num_valid): valid_tiles_m.append(data_tiles_m[num_train + k]) valid_tiles_i.append(data_tiles_i[num_train + k]) return num_not_missing