import contextlib import tensorflow as tf from deeplearning.cloud_fraction_fcn_abi import get_label_data_5cat from util.augment import augment_image from util.setup_cloud_products import logdir, modeldir, now, ancillary_path from util.util import EarlyStop, normalize, denormalize, scale, scale2, descale, \ get_grid_values_all, make_tf_callable_generator import glob import os import datetime import numpy as np import pickle import h5py import xarray as xr import gc import time AUTOTUNE = tf.data.AUTOTUNE LOG_DEVICE_PLACEMENT = False PROC_BATCH_SIZE = 4 PROC_BATCH_BUFFER_SIZE = 5000 NumClasses = 5 if NumClasses == 2: NumLogits = 1 else: NumLogits = NumClasses BATCH_SIZE = 128 NUM_EPOCHS = 100 EARLY_STOP = True PATIENCE = 7 NOISE_TRAINING = False NOISE_STDDEV = 0.01 DO_AUGMENT = True DO_SMOOTH = False SIGMA = 1.0 DO_ZERO_OUT = False # CACHE_FILE = '/scratch/long/rink/cld_opd_abi_128x128_cache' CACHE_FILE = '' USE_EMA = False EMA_OVERWRITE_FREQUENCY = 5 EMA_MOMENTUM = 0.99 BETA_1 = 0.9 BETA_2 = 0.999 # setup scaling parameters dictionary mean_std_dct = {} mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl' f = open(mean_std_file, 'rb') mean_std_dct_l2 = pickle.load(f) f.close() mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl' f = open(mean_std_file, 'rb') mean_std_dct_l1b = pickle.load(f) f.close() mean_std_dct.update(mean_std_dct_l1b) mean_std_dct.update(mean_std_dct_l2) IMG_DEPTH = 1 label_param = 'cld_opd_dcomp' params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01', 'cloud_probability', label_param] params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'cloud_probability', label_param] data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] data_params_full = ['refl_0_65um_nom'] label_idx_i = params_i.index(label_param) label_idx = params.index(label_param) print('data_params_half: ', data_params_half) print('data_params_full: ', data_params_full) print('label_param: ', label_param) KERNEL_SIZE = 3 X_LEN = Y_LEN = 128 if KERNEL_SIZE == 3: slc_x = slice(0, X_LEN // 4 + 2) slc_y = slice(0, Y_LEN // 4 + 2) x_64 = slice(4, X_LEN + 4) y_64 = slice(4, Y_LEN + 4) elif KERNEL_SIZE == 1: slc_x = slice(1, X_LEN // 4 + 1) slc_y = slice(1, Y_LEN // 4 + 1) x_64 = slice(4, X_LEN + 4) y_64 = slice(4, Y_LEN + 4) # ---------------------------------------- @contextlib.contextmanager def options(options): old_opts = tf.config.optimizer.get_experimental_options() tf.config.optimizer.set_experimental_options(options) try: yield finally: tf.config.optimizer.set_experimental_options(old_opts) def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', kernel_initializer='he_uniform', scale=None, kernel_size=3, do_drop_out=True, drop_rate=0.5, do_batch_norm=True): with tf.name_scope(block_name): skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip) if scale is not None: skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip) if do_drop_out: skip = tf.keras.layers.Dropout(drop_rate)(skip) if do_batch_norm: skip = tf.keras.layers.BatchNormalization()(skip) conv = conv + skip print(block_name+':', conv.shape) return conv def upsample_mean(grd): bsize, ylen, xlen = grd.shape up = np.zeros((bsize, ylen*2, xlen*2)) up[:, ::4, ::4] = grd[:, ::4, ::4] up[:, 1::4, ::4] = grd[:, ::4, ::4] up[:, ::4, 1::4] = grd[:, ::4, ::4] up[:, 1::4, 1::4] = grd[:, ::4, ::4] return up def get_grid_cell_mean(grd_k): mean = np.nanmean([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4], grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4], grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4], grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0) # For an all-Nan slice np.where(np.isnan(mean), 0, mean) return mean def get_min_max_std(grd_k): lo = np.nanmin([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4], grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4], grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4], grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0) hi = np.nanmax([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4], grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4], grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4], grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0) std = np.nanstd([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4], grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4], grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4], grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0) avg = np.nanmean([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4], grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4], grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4], grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0) # For an all-NaN slice np.where(np.isnan(lo), 0, lo) np.where(np.isnan(hi), 0, hi) np.where(np.isnan(std), 0, std) np.where(np.isnan(avg), 0, avg) return lo, hi, std, avg def get_cldy_frac_opd(cld_prob, opd): cld_prob = np.where(np.isnan(cld_prob), 0.0, cld_prob) cld = np.where(cld_prob < 0.5, 0, 1) opd = np.where(np.isnan(opd), 0.0, opd) cnt_cld = cld[:, 0::4, 0::4] + cld[:, 1::4, 0::4] + cld[:, 2::4, 0::4] + cld[:, 3::4, 0::4] + \ cld[:, 0::4, 1::4] + cld[:, 1::4, 1::4] + cld[:, 2::4, 1::4] + cld[:, 3::4, 1::4] + \ cld[:, 0::4, 2::4] + cld[:, 1::4, 2::4] + cld[:, 2::4, 2::4] + cld[:, 3::4, 2::4] + \ cld[:, 0::4, 3::4] + cld[:, 1::4, 3::4] + cld[:, 2::4, 3::4] + cld[:, 3::4, 3::4] opd_sum = np.sum([opd[:, 0::4, 0::4], opd[:, 1::4, 0::4], opd[:, 2::4, 0::4], opd[:, 3::4, 0::4], opd[:, 0::4, 1::4], opd[:, 1::4, 1::4], opd[:, 2::4, 1::4], opd[:, 3::4, 1::4], opd[:, 0::4, 2::4], opd[:, 1::4, 2::4], opd[:, 2::4, 2::4], opd[:, 3::4, 2::4], opd[:, 0::4, 3::4], opd[:, 1::4, 3::4], opd[:, 2::4, 3::4], opd[:, 3::4, 3::4]], axis=0) opd[cld == 0] = 0.0 cld_opd_sum = np.sum([opd[:, 0::4, 0::4], opd[:, 1::4, 0::4], opd[:, 2::4, 0::4], opd[:, 3::4, 0::4], opd[:, 0::4, 1::4], opd[:, 1::4, 1::4], opd[:, 2::4, 1::4], opd[:, 3::4, 1::4], opd[:, 0::4, 2::4], opd[:, 1::4, 2::4], opd[:, 2::4, 2::4], opd[:, 3::4, 2::4], opd[:, 0::4, 3::4], opd[:, 1::4, 3::4], opd[:, 2::4, 3::4], opd[:, 3::4, 3::4]], axis=0) cldy_opd = np.zeros(cnt_cld.shape, dtype=opd.dtype) cldy_opd[cnt_cld == 0] = opd_sum[cnt_cld == 0] / 16 cldy_opd[cnt_cld != 0] = cld_opd_sum[cnt_cld != 0] / cnt_cld[cnt_cld != 0] return cldy_opd class SRCNN: def __init__(self): self.train_data = None self.train_label = None self.test_data = None self.test_label = None self.test_data_denorm = None self.train_dataset = None self.inner_train_dataset = None self.test_dataset = None self.eval_dataset = None self.X_img = None self.X_prof = None self.X_u = None self.X_v = None self.X_sfc = None self.inputs = [] self.y = None self.handle = None self.inner_handle = None self.in_mem_batch = None self.h5f_l1b_trn = None self.h5f_l1b_tst = None self.h5f_l2_trn = None self.h5f_l2_tst = None self.logits = None self.predict_data = None self.predict_dataset = None self.mean_list = None self.std_list = None self.training_op = None self.correct = None self.accuracy = None self.loss = None self.pred_class = None self.variable_averages = None self.global_step = None self.writer_train = None self.writer_valid = None self.writer_train_valid_loss = None self.OUT_OF_RANGE = False self.model = None self.optimizer = None self.ema = None self.train_loss = None self.train_accuracy = None self.test_loss = None self.test_accuracy = None self.test_auc = None self.test_recall = None self.test_precision = None self.test_confusion_matrix = None self.test_true_pos = None self.test_true_neg = None self.test_false_pos = None self.test_false_neg = None self.test_labels = [] self.test_preds = [] self.test_probs = None self.test_input = [] self.test_cat_cf = [] self.learningRateSchedule = None self.num_data_samples = None self.initial_learning_rate = None self.data_dct = None self.train_data_files = None self.train_label_files = None self.test_data_files = None self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 self.n_chans = 6 # Testing/Evaluation mode # self.X_img = tf.keras.Input(shape=(None, None, self.n_chans + 2)) self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) self.inputs.append(self.X_img) tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) def get_in_mem_data_batch(self, idxs, is_training): if is_training: data_files = self.train_data_files label_files = self.train_label_files else: data_files = self.test_data_files label_files = self.test_label_files data_s = [] label_s = [] for k in idxs: f = data_files[k] nda = np.load(f) data_s.append(nda) f = label_files[k] nda = np.load(f) label_s.append(nda) input_data = np.concatenate(data_s) input_label = np.concatenate(label_s) # refl_i = input_label[:, params_i.index('refl_0_65um_nom'), :, :] # rlo, rhi, rstd, rmean = get_min_max_std(refl_i) # rmean = rmean[:, slc_y, slc_x] # rmean = scale2(rmean, -2.0, 120.0) # rlo = rlo[:, slc_y, slc_x] # rlo = scale2(rlo, -2.0, 120.0) # rhi = rhi[:, slc_y, slc_x] # rhi = scale2(rhi, -2.0, 120.0) # refl_rng = rhi - rlo # rstd = rstd[:, slc_y, slc_x] # rstd = scale2(rstd, 0.0, 20.0) data_norm = [] # for param in data_params_half: # idx = params.index(param) # tmp = input_data[:, idx, :, :] # tmp = tmp[:, slc_y, slc_x] # # tmp = normalize(tmp, param, mean_std_dct) # tmp = scale(tmp, param, mean_std_dct) # data_norm.append(tmp) bt = input_data[:, params.index('temp_11_0um_nom'), :, :] bt = bt[:, slc_y, slc_x] # bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct) bt = scale(bt, 'temp_11_0um_nom', mean_std_dct) data_norm.append(bt) tmp = input_label[:, params_i.index('cloud_probability'), :, :] cld_prob = tmp.copy() tmp = get_grid_cell_mean(tmp) tmp = tmp[:, slc_y, slc_x] data_norm.append(tmp) refl = input_data[:, params.index('refl_0_65um_nom'), :, :] refl = refl[:, slc_y, slc_x] # refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct) refl = scale(refl, 'refl_0_65um_nom', mean_std_dct) data_norm.append(refl) # for param in sub_fields: # idx = params.index(param) # tmp = input_data[:, idx, :, :] # tmp = tmp[:, slc_y, slc_x] # if param != 'refl_substddev_ch01': # # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) # tmp = scale(tmp, 'refl_0_65um_nom', mean_std_dct) # else: # # tmp = np.where(np.isnan(tmp), 0, tmp) # tmp = scale2(tmp, 0.0, 20.0) # data_norm.append(tmp) refl_lo = input_data[:, params.index(sub_fields[0]), :, :] refl_lo = refl_lo[:, slc_y, slc_x] refl_lo = scale2(refl_lo, -2.0, 120.0) refl_hi = input_data[:, params.index(sub_fields[1]), :, :] refl_hi = refl_hi[:, slc_y, slc_x] refl_hi = scale2(refl_hi, -2.0, 120.0) refl_rng = refl_hi - refl_lo data_norm.append(refl_rng) refl_std = input_data[:, params.index(sub_fields[2]), :, :] refl_std = refl_std[:, slc_y, slc_x] refl_std = scale2(refl_std, 0.0, 30.0) data_norm.append(refl_std) tmp = input_label[:, label_idx_i, :, :] tmp = get_grid_cell_mean(tmp) tmp = scale(tmp, label_param, mean_std_dct) tmp = tmp[:, slc_y, slc_x] data_norm.append(tmp) # --------- # data = np.stack(data_norm, axis=3) # data = data.astype(np.float32) # ----------------------------------------------------- # ----------------------------------------------------- label = input_label[:, label_idx_i, :, :] label = label[:, y_64, x_64] cld_prob = cld_prob[:, y_64, x_64] cat_cf = get_label_data_5cat(cld_prob) _, _, cp_std, _ = get_min_max_std(cld_prob) if KERNEL_SIZE != 1: cat_cf = np.pad(cat_cf, pad_width=[(0, 0), (1, 1), (1, 1)]) cp_std = np.pad(cp_std, pad_width=[(0, 0), (1, 1), (1, 1)]) data_norm.append(cat_cf) data_norm.append(cp_std) data = np.stack(data_norm, axis=3) label = get_cldy_frac_opd(cld_prob, label) # label = scale(label, label_param, mean_std_dct) label = np.where(np.isnan(label), 0, label) label = np.expand_dims(label, axis=3) data = data.astype(np.float32) label = label.astype(np.float32) # if is_training and DO_AUGMENT: # data_ud = np.flip(data, axis=1) # label_ud = np.flip(label, axis=1) # # data_lr = np.flip(data, axis=2) # label_lr = np.flip(label, axis=2) # # data = np.concatenate([data, data_ud, data_lr]) # label = np.concatenate([label, label_ud, label_lr]) return data, label def get_in_mem_data_batch_train(self, idxs): return self.get_in_mem_data_batch(idxs, True) def get_in_mem_data_batch_test(self, idxs): return self.get_in_mem_data_batch(idxs, False) @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32]) return out @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function_test(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32]) return out def get_train_dataset(self, num_files): def integer_gen(limit): n = 0 while n < limit: yield n n += 1 num_gen = integer_gen(num_files) gen = make_tf_callable_generator(num_gen) dataset = tf.data.Dataset.from_generator(gen, output_types=tf.int32) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) dataset = dataset.cache(filename=CACHE_FILE) dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE, reshuffle_each_iteration=True) if DO_AUGMENT: dataset = dataset.map(augment_image(), num_parallel_calls=8) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset def get_test_dataset(self, num_files): def integer_gen(limit): n = 0 while n < limit: yield n n += 1 num_gen = integer_gen(num_files) gen = make_tf_callable_generator(num_gen) dataset = tf.data.Dataset.from_generator(gen, output_types=tf.int32) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function_test, num_parallel_calls=8) dataset = dataset.cache() self.test_dataset = dataset def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples): self.train_data_files = train_data_files self.train_label_files = train_label_files self.test_data_files = test_data_files self.test_label_files = test_label_files self.get_train_dataset(len(train_data_files)) self.get_test_dataset(len(test_data_files)) self.num_data_samples = num_train_samples # approximately print('datetime: ', now) print('training and test data: ') print('---------------------------') print('num train files: ', len(train_data_files)) print('BATCH SIZE: ', BATCH_SIZE) print('num test files: ', len(test_data_files)) print('setup_pipeline: Done') def setup_test_pipeline(self, test_data_files, test_label_files): self.test_data_files = test_data_files self.test_label_files = test_label_files self.get_test_dataset(len(test_data_files)) print('setup_test_pipeline: Done') def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2): print('build_cnn') padding = "SAME" # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.relu momentum = 0.99 num_filters = 64 input_2d = self.inputs[0] input_2d = input_2d[:, :, :, 0:self.n_chans] print('input: ', input_2d.shape) conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d) print(conv.shape) # if NOISE_TRAINING: # conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv) scale = 0.2 conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale) conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b) # conv = conv + conv_b conv = conv_b print(conv.shape) # This is effectively a Dense layer self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='regression')(conv) print(self.logits.shape) def build_training(self): # self.loss = tf.keras.losses.MeanSquaredError() # Regression self.loss = tf.keras.losses.MeanAbsoluteError() # Regression # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) initial_learning_rate = 0.001 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch decay_steps = int(steps_per_epoch) * 2 print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule, beta_1=BETA_1, beta_2=BETA_2, use_ema=USE_EMA, ema_momentum=EMA_MOMENTUM, ema_overwrite_frequency=EMA_OVERWRITE_FREQUENCY) self.optimizer = optimizer self.initial_learning_rate = initial_learning_rate def build_evaluation(self): self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy') self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy') self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss') @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) def train_step(self, inputs, labels): labels = tf.squeeze(labels, axis=[3]) with tf.GradientTape() as tape: pred = self.model([inputs], training=True) loss = self.loss(labels, pred) total_loss = loss if len(self.model.losses) > 0: reg_loss = tf.math.add_n(self.model.losses) total_loss = loss + reg_loss gradients = tape.gradient(total_loss, self.model.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) self.train_loss(loss) self.train_accuracy(labels, pred) return loss @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) def test_step(self, inputs, labels): labels = tf.squeeze(labels, axis=[3]) pred = self.model([inputs], training=False) t_loss = self.loss(labels, pred) self.test_loss(t_loss) self.test_accuracy(labels, pred) # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) # decorator commented out because pred.numpy(): pred not evaluated yet. def predict(self, inputs, labels): pred = self.model([inputs], training=False) # t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred) t_loss = self.loss(labels, pred) self.test_labels.append(labels) self.test_preds.append(pred.numpy()) self.test_input.append(inputs) self.test_cat_cf.append(inputs[:, :, :, self.n_chans]) self.test_loss(t_loss) self.test_accuracy(labels, pred) def reset_test_metrics(self): self.test_loss.reset_states() self.test_accuracy.reset_states() def get_metrics(self): recall = self.test_recall.result() precsn = self.test_precision.result() f1 = 2 * (precsn * recall) / (precsn + recall) tn = self.test_true_neg.result() tp = self.test_true_pos.result() fn = self.test_false_neg.result() fp = self.test_false_pos.result() mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) return f1, mcc def do_training(self, ckpt_dir=None): if ckpt_dir is None: if not os.path.exists(modeldir): os.mkdir(modeldir) ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) else: ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss')) step = 0 total_time = 0 best_test_loss = np.finfo(dtype=np.float64).max if EARLY_STOP: es = EarlyStop(patience=PATIENCE) for epoch in range(NUM_EPOCHS): self.train_loss.reset_states() self.train_accuracy.reset_states() t0 = datetime.datetime.now().timestamp() proc_batch_cnt = 0 n_samples = 0 for data, label in self.train_dataset: trn_ds = tf.data.Dataset.from_tensor_slices((data, label)) trn_ds = trn_ds.batch(BATCH_SIZE) for mini_batch in trn_ds: if self.learningRateSchedule is not None: loss = self.train_step(mini_batch[0], mini_batch[1]) if (step % 100) == 0: with self.writer_train.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('learning_rate', self.optimizer.lr.numpy(), step=step) tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_epochs', epoch, step=step) self.reset_test_metrics() for data_tst, label_tst in self.test_dataset: tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst)) tst_ds = tst_ds.batch(BATCH_SIZE) for mini_batch_test in tst_ds: self.test_step(mini_batch_test[0], mini_batch_test[1]) with self.writer_valid.as_default(): tf.summary.scalar('loss_val', self.test_loss.result(), step=step) tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) with self.writer_train_valid_loss.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('loss_val', self.test_loss.result(), step=step) print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.optimizer.lr.numpy()) step += 1 print('train loss: ', loss.numpy()) proc_batch_cnt += 1 n_samples += data.shape[0] print('proc_batch_cnt: ', proc_batch_cnt, n_samples) t1 = datetime.datetime.now().timestamp() print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) total_time += (t1-t0) self.reset_test_metrics() for data, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data, label)) ds = ds.batch(BATCH_SIZE) for mini_batch in ds: self.test_step(mini_batch[0], mini_batch[1]) print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) print('------------------------------------------------------') tst_loss = self.test_loss.result().numpy() if tst_loss < best_test_loss: best_test_loss = tst_loss ckpt_manager.save() if EARLY_STOP and es.check_stop(tst_loss): break print('total time: ', total_time) self.writer_train.close() self.writer_valid.close() self.writer_train_valid_loss.close() def build_model(self): with options({'layout': False}): print(tf.config.optimizer.get_experimental_options()) self.build_srcnn() self.model = tf.keras.Model(self.inputs, self.logits) def restore(self, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.reset_test_metrics() for data, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data, label)) ds = ds.batch(BATCH_SIZE) for mini_batch_test in ds: self.predict(mini_batch_test[0], mini_batch_test[1]) print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) labels = np.concatenate(self.test_labels) preds = np.concatenate(self.test_preds) inputs = np.concatenate(self.test_input) # labels = denormalize(labels, label_param, mean_std_dct) # preds = denormalize(preds, label_param, mean_std_dct) # labels = descale(labels, label_param, mean_std_dct) # preds = descale(preds, label_param, mean_std_dct) return labels, preds, inputs def do_evaluate(self, inputs, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.reset_test_metrics() pred = self.model([inputs], training=False) self.test_probs = pred pred = pred.numpy() return pred def run(self, directory, ckpt_dir=None, num_data_samples=50000): train_data_files = glob.glob(directory+'train*mres*.npy') valid_data_files = glob.glob(directory+'valid*mres*.npy') train_label_files = glob.glob(directory+'train*ires*.npy') valid_label_files = glob.glob(directory+'valid*ires*.npy') self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples) self.build_model() self.build_training() self.build_evaluation() self.do_training(ckpt_dir=ckpt_dir) def run_restore(self, directory, ckpt_dir): self.num_data_samples = 1000 valid_data_files = glob.glob(directory + 'valid*mres*.npy') valid_label_files = [f.replace('mres', 'ires') for f in valid_data_files] self.setup_test_pipeline(valid_data_files, valid_label_files) self.build_model() self.build_training() self.build_evaluation() return self.restore(ckpt_dir) def run_evaluate(self, data, ckpt_dir): # data = tf.convert_to_tensor(data, dtype=tf.float32) self.num_data_samples = 80000 self.build_model() self.build_training() self.build_evaluation() return self.do_evaluate(data, ckpt_dir) def setup_inference(self, ckpt_dir): self.num_data_samples = 80000 self.build_model() self.build_training() self.build_evaluation() ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) def do_inference(self, inputs): self.reset_test_metrics() pred = self.model([inputs], training=False) self.test_probs = pred pred = pred.numpy() return pred def run_inference(self, in_file, out_file): gc.collect() h5f = h5py.File(in_file, 'r') bt = get_grid_values_all(h5f, 'temp_11_0um_nom') y_len, x_len = bt.shape refl = get_grid_values_all(h5f, 'refl_0_65um_nom') refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub') refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub') refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub') cp = get_grid_values_all(h5f, 'cloud_probability') opd = get_grid_values_all(h5f, label_param) cldy_frac_opd = self.run_inference_(bt, refl, refl_lo, refl_hi, refl_std, cp, opd) cldy_frac_opd_out = np.zeros((y_len, x_len), dtype=np.int8) border = int((KERNEL_SIZE - 1) / 2) cldy_frac_opd_out[border:y_len - border, border:x_len - border] = cldy_frac_opd[0, :, :, 0] # Use this hack for now. off_earth = (bt <= 161.0) night = np.isnan(refl) cldy_frac_opd_out[off_earth] = -1 cldy_frac_opd_out[np.invert(off_earth) & night] = -1 # --- Make a DataArray ---------------------------------------------------- # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um'] # dims = ['num_params', 'y', 'x'] # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims) # da.assign_coords({ # 'num_params': var_names, # 'lat': (['y', 'x'], lats), # 'lon': (['y', 'x'], lons) # }) # --------------------------------------------------------------------------- h5f.close() if out_file is not None: np.save(out_file, (cldy_frac_opd_out, bt, refl, cp)) else: # return [cld_frac_out, bt, refl, cp, lons, lats] return cldy_frac_opd_out def run_inference_full_disk(self, in_file, out_file): gc.collect() t0 = time.time() h5f = h5py.File(in_file, 'r') bt = get_grid_values_all(h5f, 'temp_11_0um_nom') y_len, x_len = bt.shape h_y_len = int(y_len / 2) refl = get_grid_values_all(h5f, 'refl_0_65um_nom') refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub') refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub') refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub') cp = get_grid_values_all(h5f, 'cloud_probability') opd = get_grid_values_all(h5f, label_param) t1 = time.time() print(' read time:', (t1-t0)) bt_nh = bt[0:h_y_len + 1, :] refl_nh = refl[0:h_y_len + 1, :] refl_lo_nh = refl_lo[0:h_y_len + 1, :] refl_hi_nh = refl_hi[0:h_y_len + 1, :] refl_std_nh = refl_std[0:h_y_len + 1, :] cp_nh = cp[0:h_y_len + 1, :] opd_nh = opd[0:h_y_len + 1, :] bt_sh = bt[h_y_len - 1:y_len, :] refl_sh = refl[h_y_len - 1:y_len, :] refl_lo_sh = refl_lo[h_y_len - 1:y_len, :] refl_hi_sh = refl_hi[h_y_len - 1:y_len, :] refl_std_sh = refl_std[h_y_len - 1:y_len, :] cp_sh = cp[h_y_len - 1:y_len, :] opd_sh = opd[h_y_len - 1:y_len, :] t0 = time.time() cldy_frac_opd_nh = self.run_inference_(bt_nh, refl_nh, refl_lo_nh, refl_hi_nh, refl_std_nh, cp_nh, opd_nh) cldy_frac_opd_sh = self.run_inference_(bt_sh, refl_sh, refl_lo_sh, refl_hi_sh, refl_std_sh, cp_sh, opd_sh) t1 = time.time() print(' inference time: ', (t1-t0)) cldy_frac_opd_out = np.zeros((y_len, x_len), dtype=np.int8) border = int((KERNEL_SIZE - 1) / 2) cldy_frac_opd_out[border:h_y_len, border:x_len - border] = cldy_frac_opd_nh[0, :, :, 0] cldy_frac_opd_out[h_y_len:y_len - border, border:x_len - border] = cldy_frac_opd_sh[0, :, :, 0] # Use this hack for now. off_earth = (bt <= 161.0) night = np.isnan(refl) cldy_frac_opd_out[off_earth] = -1 cldy_frac_opd_out[np.invert(off_earth) & night] = -1 # --- Make DataArray ------------------------------------------------- # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um'] # dims = ['num_params', 'y', 'x'] # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims) # da.assign_coords({ # 'num_params': var_names, # 'lat': (['y', 'x'], lats), # 'lon': (['y', 'x'], lons) # }) # ------------------------------------------------------------------------ h5f.close() if out_file is not None: np.save(out_file, (cldy_frac_opd_out, bt, refl, cp)) else: # return [cld_frac_out, bt, refl, cp, lons, lats] return cldy_frac_opd_out def run_inference_(self, bt, refl, refl_lo, refl_hi, refl_std, cp, opd): bt = scale(bt, 'temp_11_0um_nom', mean_std_dct) refl = scale(refl, 'refl_0_65um_nom', mean_std_dct) refl_lo = scale(refl_lo, 'refl_0_65um_nom', mean_std_dct) refl_hi = scale(refl_hi, 'refl_0_65um_nom', mean_std_dct) refl_rng = refl_hi - refl_lo refl_std = scale2(refl_std, 0.0, 30.0) cp = np.where(np.isnan(cp), 0, cp) opd = scale(opd, label_param, mean_std_dct) data = np.stack([bt, cp, refl, refl_rng, refl_std, opd], axis=2) data = np.expand_dims(data, axis=0) opd = self.do_inference(data) return opd def run_restore_static(directory, ckpt_dir, out_file=None): nn = SRCNN() labels, preds, inputs = nn.run_restore(directory, ckpt_dir) print(np.histogram(labels)) print(np.histogram(preds)) if out_file is not None: y_hi, x_hi = (Y_LEN // 4) + 1, (X_LEN // 4) + 1 np.save(out_file, [labels[:, :, :, 0], preds[:, :, :, 0], descale(inputs[:, 1:y_hi, 1:x_hi, 0], 'temp_11_0um_nom', mean_std_dct), inputs[:, 1:y_hi, 1:x_hi, 1], descale(inputs[:, 1:y_hi, 1:x_hi, 2], 'refl_0_65um_nom', mean_std_dct), descale(inputs[:, 1:y_hi, 1:x_hi, 3], 'refl_0_65um_nom', mean_std_dct), inputs[:, 1:y_hi, 1:x_hi, 4], descale(inputs[:, 1:y_hi, 1:x_hi, 5], label_param, mean_std_dct), inputs[:, 1:y_hi, 1:x_hi, 6], inputs[:, 1:y_hi, 1:x_hi, 7]]) def run_evaluate_static(in_file, out_file, ckpt_dir): gc.collect() h5f = h5py.File(in_file, 'r') bt = get_grid_values_all(h5f, 'temp_11_0um_nom') y_len, x_len = bt.shape refl = get_grid_values_all(h5f, 'refl_0_65um_nom') refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub') refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub') refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub') cp = get_grid_values_all(h5f, label_param) # lons = get_grid_values_all(h5f, 'longitude') # lats = get_grid_values_all(h5f, 'latitude') cld_frac = run_evaluate_static_(bt, refl, refl_lo, refl_hi, refl_std, cp, ckpt_dir) cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8) border = int((KERNEL_SIZE - 1)/2) cld_frac_out[border:y_len-border, border:x_len - border] = cld_frac[0, :, :] # Use this hack for now. off_earth = (bt <= 161.0) night = np.isnan(refl) cld_frac_out[off_earth] = -1 cld_frac_out[np.invert(off_earth) & night] = -1 # --- Make a DataArray ---------------------------------------------------- # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um'] # dims = ['num_params', 'y', 'x'] # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims) # da.assign_coords({ # 'num_params': var_names, # 'lat': (['y', 'x'], lats), # 'lon': (['y', 'x'], lons) # }) # --------------------------------------------------------------------------- h5f.close() if out_file is not None: np.save(out_file, (cld_frac_out, bt, refl, cp)) else: # return [cld_frac_out, bt, refl, cp, lons, lats] return cld_frac_out def run_evaluate_static_full_disk(in_file, out_file, ckpt_dir): gc.collect() h5f = h5py.File(in_file, 'r') bt = get_grid_values_all(h5f, 'temp_11_0um_nom') y_len, x_len = bt.shape h_y_len = int(y_len/2) refl = get_grid_values_all(h5f, 'refl_0_65um_nom') refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub') refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub') refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub') cp = get_grid_values_all(h5f, label_param) # lons = get_grid_values_all(h5f, 'longitude') # lats = get_grid_values_all(h5f, 'latitude') bt_nh = bt[0:h_y_len+1, :] refl_nh = refl[0:h_y_len+1, :] refl_lo_nh = refl_lo[0:h_y_len+1, :] refl_hi_nh = refl_hi[0:h_y_len+1, :] refl_std_nh = refl_std[0:h_y_len+1, :] cp_nh = cp[0:h_y_len+1, :] bt_sh = bt[h_y_len-1:y_len, :] refl_sh = refl[h_y_len-1:y_len, :] refl_lo_sh = refl_lo[h_y_len-1:y_len, :] refl_hi_sh = refl_hi[h_y_len-1:y_len, :] refl_std_sh = refl_std[h_y_len-1:y_len, :] cp_sh = cp[h_y_len-1:y_len, :] cld_frac_nh = run_evaluate_static_(bt_nh, refl_nh, refl_lo_nh, refl_hi_nh, refl_std_nh, cp_nh, ckpt_dir) cld_frac_sh = run_evaluate_static_(bt_sh, refl_sh, refl_lo_sh, refl_hi_sh, refl_std_sh, cp_sh, ckpt_dir) cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8) border = int((KERNEL_SIZE - 1)/2) cld_frac_out[border:h_y_len, border:x_len - border] = cld_frac_nh[0, :, :] cld_frac_out[h_y_len:y_len - border, border:x_len - border] = cld_frac_sh[0, :, :] # Use this hack for now. off_earth = (bt <= 161.0) night = np.isnan(refl) cld_frac_out[off_earth] = -1 cld_frac_out[np.invert(off_earth) & night] = -1 # --- Make DataArray ------------------------------------------------- # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um'] # dims = ['num_params', 'y', 'x'] # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims) # da.assign_coords({ # 'num_params': var_names, # 'lat': (['y', 'x'], lats), # 'lon': (['y', 'x'], lons) # }) # ------------------------------------------------------------------------ h5f.close() if out_file is not None: np.save(out_file, (cld_frac_out, bt, refl, cp)) else: # return [cld_frac_out, bt, refl, cp, lons, lats] return cld_frac_out def run_evaluate_static_valid(in_file, out_file, ckpt_dir): gc.collect() h5f = h5py.File(in_file, 'r') bt = get_grid_values_all(h5f, 'orig/temp_ch38') y_len, x_len = bt.shape refl = get_grid_values_all(h5f, 'orig/refl_ch01') refl_lo = get_grid_values_all(h5f, 'orig/refl_submin_ch01') refl_hi = get_grid_values_all(h5f, 'orig/refl_submax_ch01') refl_std = get_grid_values_all(h5f, 'orig/refl_substddev_ch01') cp = get_grid_values_all(h5f, 'orig/'+label_param) lons = get_grid_values_all(h5f, 'orig/longitude') lats = get_grid_values_all(h5f, 'orig/latitude') cp_sres = get_grid_values_all(h5f, 'super/'+label_param) mean_cp_sres = get_grid_cell_mean(np.expand_dims(cp_sres, axis=0))[0] # cld_frac_truth = get_label_data_5cat(np.expand_dims(cp_sres, axis=0))[0] cld_frac_truth = None h5f.close() cld_frac = run_evaluate_static_(bt, refl, refl_lo, refl_hi, refl_std, cp, ckpt_dir) cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8) border = int((KERNEL_SIZE - 1)/2) cld_frac_out[border:y_len-border, border:x_len - border] = cld_frac[0, :, :] var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um'] dims = ['num_params', 'y', 'x'] da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims) da.assign_coords({ 'num_params': var_names, 'lat': (['y', 'x'], lats), 'lon': (['y', 'x'], lons) }) if out_file is not None: np.save(out_file, (cld_frac_out, bt, refl, cp, lons, lats, mean_cp_sres, cld_frac_truth)) else: return [cld_frac_out, bt, refl, cp, lons, lats] def run_evaluate_static_(bt, refl, refl_lo, refl_hi, refl_std, cp, ckpt_dir): bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct) refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct) refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct) refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct) refl_std = np.where(np.isnan(refl_std), 0, refl_std) cp = np.where(np.isnan(cp), 0, cp) data = np.stack([bt, refl, refl_lo, refl_hi, refl_std, cp], axis=2) data = np.expand_dims(data, axis=0) nn = SRCNN() probs = nn.run_evaluate(data, ckpt_dir) cld_frac = probs.argmax(axis=3) cld_frac = cld_frac.astype(np.int8) return cld_frac def analyze(directory, outfile): train_data_files = glob.glob(directory + 'train*mres*.npy') valid_data_files = glob.glob(directory + 'valid*mres*.npy') train_label_files = glob.glob(directory + 'train*ires*.npy') valid_label_files = glob.glob(directory + 'valid*ires*.npy') data_s = [] label_s = [] for idx, data_f in enumerate(valid_data_files): nda = np.load(data_f) data_s.append(nda) f = valid_label_files[idx] nda = np.load(f) label_s.append(nda) input_data = np.concatenate(data_s) input_label = np.concatenate(label_s) refl_i = input_label[:, params_i.index('refl_0_65um_nom'), :, :] rlo, rhi, rstd, rmean = get_min_max_std(refl_i) rmean_i = rmean[:, slc_y, slc_x] rlo_i = rlo[:, slc_y, slc_x] rhi_i = rhi[:, slc_y, slc_x] rstd_i = rstd[:, slc_y, slc_x] rlo_m = input_data[:, params.index('refl_submin_ch01'), :, :] rlo_m = rlo_m[:, slc_y, slc_x] rhi_m = input_data[:, params.index('refl_submax_ch01'), :, :] rhi_m = rhi_m[:, slc_y, slc_x] rstd_m = input_data[:, params.index('refl_substddev_ch01'), :, :] rstd_m = rstd_m[:, slc_y, slc_x] rmean = input_data[:, params.index('refl_0_65um_nom'), :, :] rmean_m = rmean[:, slc_y, slc_x] # ------------------------ cp_i = input_label[:, params_i.index('cloud_probability'), :, :] _, _, _, mean = get_min_max_std(cp_i) cp_mean_i = mean[:, slc_y, slc_x] mean = input_data[:, params.index('cloud_probability'), :, :] cp_mean_m = mean[:, slc_y, slc_x] # ----------------------------- opd_i = input_label[:, params_i.index('cld_opd_dcomp'), :, :] _, _, _, mean = get_min_max_std(opd_i) opd_mean_i = mean[:, slc_y, slc_x] mean = input_data[:, params.index('cld_opd_dcomp'), :, :] opd_mean_m = mean[:, slc_y, slc_x] np.save(outfile, (rmean_i, rmean_m, cp_mean_i, cp_mean_m, opd_mean_i, opd_mean_m, rlo_i, rlo_m, rhi_i, rhi_m, rstd_i, rstd_m)) if __name__ == "__main__": nn = SRCNN() nn.run('matchup_filename')