import glob import tensorflow as tf from util.setup import logdir, modeldir, cachepath, now, ancillary_path, home_dir from util.util import EarlyStop, normalize, make_for_full_domain_predict, scale import os, datetime import numpy as np import pickle import h5py # L1B M/I-bands: /apollo/cloud/scratch/cwhite/VIIRS_HRES/2019/2019_01_01/ # CLAVRx: /apollo/cloud/scratch/Satellite_Output/VIIRS_HRES/2019/2019_01_01/ # /apollo/cloud/scratch/Satellite_Output/andi/NEW/VIIRS_HRES/2019 # /home/mfoster/clavrx_installations/clavrx-dev/main_src # viirs_nasa_hres_read_mod.f90 # viirs_nasa_read_module.f90 LOG_DEVICE_PLACEMENT = False PROC_BATCH_SIZE = 10 PROC_BATCH_BUFFER_SIZE = 50000 NumClasses = 2 if NumClasses == 2: NumLogits = 1 else: NumLogits = NumClasses BATCH_SIZE = 128 NUM_EPOCHS = 40 TRACK_MOVING_AVERAGE = False EARLY_STOP = True TRIPLET = False CONV3D = False NOISE_TRAINING = False NOISE_STDDEV = 0.10 DO_AUGMENT = False mean_std_file = home_dir+'/viirs_emis_rad_mean_std.pkl' f_stats = open(mean_std_file, 'rb') mean_std_dct = pickle.load(f_stats) f_stats.close() param = 'M15' # -- Zero out params (Experimentation Only) ------------ zero_out_params = ['cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] DO_ZERO_OUT = False def build_conv2d_block(conv, num_filters, activation, block_name, padding='SAME'): with tf.name_scope(block_name): skip = conv conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) skip = tf.keras.layers.BatchNormalization()(skip) conv = conv + skip conv = tf.keras.layers.LeakyReLU()(conv) print(conv.shape) return conv class UNET: def __init__(self): self.train_data = None self.train_label = None self.test_data = None self.test_label = None self.test_data_denorm = None self.train_dataset = None self.inner_train_dataset = None self.test_dataset = None self.eval_dataset = None self.X_img = None self.X_prof = None self.X_u = None self.X_v = None self.X_sfc = None self.inputs = [] self.y = None self.handle = None self.inner_handle = None self.in_mem_batch = None self.logits = None self.predict_data = None self.predict_dataset = None self.mean_list = None self.std_list = None self.training_op = None self.correct = None self.accuracy = None self.loss = None self.pred_class = None self.variable_averages = None self.global_step = None self.writer_train = None self.writer_valid = None self.writer_train_valid_loss = None self.OUT_OF_RANGE = False self.in_mem_data_cache = {} self.in_mem_data_cache_test = {} self.model = None self.optimizer = None self.ema = None self.train_loss = None self.train_accuracy = None self.test_loss = None self.test_accuracy = None self.test_auc = None self.test_recall = None self.test_precision = None self.test_confusion_matrix = None self.test_true_pos = None self.test_true_neg = None self.test_false_pos = None self.test_false_neg = None self.test_labels = [] self.test_preds = [] self.test_probs = None self.learningRateSchedule = None self.num_data_samples = None self.initial_learning_rate = None self.data_dct = None self.train_data_files = None self.train_label_files = None self.test_data_files = None self.test_label_files = None # self.n_chans = len(self.train_params) self.n_chans = 1 if TRIPLET: self.n_chans *= 3 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) self.inputs.append(self.X_img) self.inputs.append(tf.keras.Input(shape=(None, None, 1))) self.flight_level = 0 self.DISK_CACHE = False # if datapath is not None: # self.DISK_CACHE = False # f = open(datapath, 'rb') # self.in_mem_data_cache = pickle.load(f) # f.close() tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) def get_in_mem_data_batch(self, idxs, is_training): if is_training: data_files = self.train_data_files label_files = self.train_label_files else: data_files = self.test_data_files label_files = self.test_label_files data_s = [] label_s = [] for k in idxs: f = data_files[k] nda = np.load(f) data_s.append(nda) f = label_files[k] nda = np.load(f) label_s.append(nda) data = np.concatenate(data_s) data = data[:, 0, :, :] data = np.expand_dims(data, axis=3) label = np.concatenate(label_s) label = label[:, 0, :, :] label = np.expand_dims(label, axis=3) data = data.astype(np.float32) label = label.astype(np.float32) data = normalize(data, param, mean_std_dct) label = normalize(label, param, mean_std_dct) if is_training and DO_AUGMENT: data_ud = np.flip(data, axis=1) label_ud = np.flip(label, axis=1) data_lr = np.flip(data, axis=2) label_lr = np.flip(label, axis=2) data = np.concatenate([data, data_ud, data_lr]) label = np.concatenate([label, label_ud, label_lr]) return data, data, label def get_in_mem_data_batch_train(self, idxs): return self.get_in_mem_data_batch(idxs, True) def get_in_mem_data_batch_test(self, idxs): return self.get_in_mem_data_batch(idxs, False) def get_in_mem_data_batch_eval(self, idxs): data = [] for param in self.train_params: nda = self.data_dct[param] nda = normalize(nda, param, mean_std_dct) data.append(nda) data = np.stack(data) data = data.astype(np.float32) data = np.transpose(data, axes=(1, 2, 0)) data = np.expand_dims(data, axis=0) nda = np.zeros([1]) nda[0] = self.flight_level nda = tf.one_hot(nda, 5).numpy() nda = np.expand_dims(nda, axis=0) nda = np.expand_dims(nda, axis=0) return data, nda @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32, tf.float32]) return out @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function_test(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32, tf.float32]) return out @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function_evaluate(self, indexes): # TODO: modify for user specified altitude out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], [tf.float32, tf.float32]) return out def get_train_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) dataset = dataset.cache() if DO_AUGMENT: dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset def get_test_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function_test, num_parallel_calls=8) dataset = dataset.cache() self.test_dataset = dataset def get_evaluate_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8) self.eval_dataset = dataset # def setup_pipeline(self, data_nda, label_nda, perc=0.20): # # num_samples = data_nda.shape[0] # num_test = int(num_samples * perc) # self.num_data_samples = num_samples - num_test # num_train = self.num_data_samples # # self.train_data_nda = data_nda[0:num_train] # self.train_label_nda = label_nda[0:num_train] # self.test_data_nda = data_nda[num_train:] # self.test_label_nda = label_nda[num_train:] # # trn_idxs = np.arange(self.train_data_nda.shape[0]) # tst_idxs = np.arange(self.test_data_nda.shape[0]) # # np.random.shuffle(tst_idxs) # # self.get_train_dataset(trn_idxs) # self.get_test_dataset(tst_idxs) # # print('datetime: ', now) # print('training and test data: ') # print('---------------------------') # print('num train samples: ', self.num_data_samples) # print('BATCH SIZE: ', BATCH_SIZE) # print('num test samples: ', tst_idxs.shape[0]) # print('setup_pipeline: Done') def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples): self.train_data_files = train_data_files self.train_label_files = train_label_files self.test_data_files = test_data_files self.test_label_files = test_label_files trn_idxs = np.arange(len(train_data_files)) np.random.shuffle(trn_idxs) tst_idxs = np.arange(len(train_data_files)) self.get_train_dataset(trn_idxs) self.get_test_dataset(tst_idxs) self.num_data_samples = num_train_samples # approximately print('datetime: ', now) print('training and test data: ') print('---------------------------') print('num train samples: ', self.num_data_samples) print('BATCH SIZE: ', BATCH_SIZE) print('num test samples: ', tst_idxs.shape[0]) print('setup_pipeline: Done') def setup_test_pipeline(self, filename_l1b, filename_l2, seed=None, shuffle=False): if filename_l1b is not None: self.h5f_l1b_tst = h5py.File(filename_l1b, 'r') if filename_l2 is not None: self.h5f_l2_tst = h5py.File(filename_l2, 'r') if self.h5f_l1b_tst is not None: h5f = self.h5f_l1b_tst else: h5f = self.h5f_l2_tst time = h5f['time'] tst_idxs = np.arange(time.shape[0]) self.num_data_samples = len(tst_idxs) if seed is not None: np.random.seed(seed) if shuffle: np.random.shuffle(tst_idxs) self.get_test_dataset(tst_idxs) print('num test samples: ', tst_idxs.shape[0]) print('setup_test_pipeline: Done') def setup_eval_pipeline(self, data_dct, num_tiles=1): self.data_dct = data_dct idxs = np.arange(num_tiles) self.num_data_samples = idxs.shape[0] self.get_evaluate_dataset(idxs) def build_unet(self): print('build_cnn') # padding = "VALID" padding = "SAME" # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.leaky_relu momentum = 0.99 num_filters = self.n_chans * 8 input_2d = self.inputs[0] print('input: ', input_2d.shape) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=7, strides=1, padding='VALID', activation=None)(input_2d) conv = conv[:, 6:70, 6:70, :] print('Contracting Branch -----------') print('input: ', conv.shape) skip = conv if NOISE_TRAINING: conv = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv) # Contracting (Encoding) ------------------------------------------------------------------------------------ conv_1 = conv conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) skip = tf.keras.layers.BatchNormalization()(skip) conv = conv + skip conv = tf.keras.layers.LeakyReLU()(conv) print('1d: ', conv.shape) # ----------------------------------------------------------------------------------------------------------- conv_2 = conv skip = conv num_filters *= 2 conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) skip = tf.keras.layers.BatchNormalization()(skip) conv = conv + skip conv = tf.keras.layers.LeakyReLU()(conv) print('2d: ', conv.shape) # ---------------------------------------------------------------------------------------------------------- conv_3 = conv skip = conv num_filters *= 2 conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) skip = tf.keras.layers.BatchNormalization()(skip) conv = conv + skip conv = tf.keras.layers.LeakyReLU()(conv) print('3d: ', conv.shape) # ----------------------------------------------------------------------------------------------------------- conv_4 = conv skip = conv num_filters *= 2 conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) skip = tf.keras.layers.BatchNormalization()(skip) conv = conv + skip conv = tf.keras.layers.LeakyReLU()(conv) print('4d: ', conv.shape) # Expanding (Decoding) branch ------------------------------------------------------------------------------- print('expanding branch --------------') num_filters /= 2 conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) conv = tf.keras.layers.concatenate([conv, conv_4]) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print('5: ', conv.shape) num_filters /= 2 conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) conv = tf.keras.layers.concatenate([conv, conv_3]) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print('6: ', conv.shape) num_filters /= 2 conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) conv = tf.keras.layers.concatenate([conv, conv_2]) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print('7: ', conv.shape) num_filters /= 2 conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) print('8: ', conv.shape) conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) print('9: ', conv.shape) # if NumClasses == 2: # activation = tf.nn.sigmoid # For binary # else: # activation = tf.nn.softmax # For multi-class activation = tf.nn.sigmoid # Called logits, but these are actually probabilities, see activation self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=activation)(conv) print(self.logits.shape) def build_upsample(self): print('build_upsample') # padding = "VALID" padding = "SAME" # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.leaky_relu num_filters = self.n_chans * 8 input_2d = self.inputs[0] print('input: ', input_2d.shape) # Expanding (Decoding) branch ------------------------------------------------------------------------------- print('expanding branch') conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=7, strides=2, padding=padding, activation=activation)(input_2d) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) conv = conv[:, 18:146, 18:146, :] num_filters /= 2 conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=1, strides=1, padding=padding, activation=activation)(conv) print(conv.shape) num_filters /= 2 conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=1, strides=1, padding=padding, activation=activation)(conv) print(conv.shape) # if NumClasses == 2: # activation = tf.nn.sigmoid # For binary # else: # activation = tf.nn.softmax # For multi-class activation = tf.nn.sigmoid # Called logits, but these are actually probabilities, see activation self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=activation)(conv) print(self.logits.shape) # num_filters /= 2 # conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) # conv = tf.keras.layers.concatenate([conv, conv_3]) # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) # conv = tf.keras.layers.BatchNormalization()(conv) # print('6: ', conv.shape) # # num_filters /= 2 # conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) # conv = tf.keras.layers.concatenate([conv, conv_2]) # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) # conv = tf.keras.layers.BatchNormalization()(conv) # print('7: ', conv.shape) # # num_filters /= 2 # conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) # print('8: ', conv.shape) # # conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) # print('9: ', conv.shape) def build_training(self): # if NumClasses == 2: # self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only # else: # self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class self.loss = tf.keras.losses.MeanSquaredError() # Regression # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) initial_learning_rate = 0.002 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch decay_steps = int(steps_per_epoch / 2) print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) if TRACK_MOVING_AVERAGE: # Not really sure this works properly (from tfa) # optimizer = tfa.optimizers.MovingAverage(optimizer) self.ema = tf.train.ExponentialMovingAverage(decay=0.9999) self.optimizer = optimizer self.initial_learning_rate = initial_learning_rate def build_evaluation(self): # self.train_loss = tf.keras.metrics.Mean(name='train_loss') # self.test_loss = tf.keras.metrics.Mean(name='test_loss') self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy') self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy') self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss') # if NumClasses == 2: # self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy') # self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy') # self.test_auc = tf.keras.metrics.AUC(name='test_auc') # self.test_recall = tf.keras.metrics.Recall(name='test_recall') # self.test_precision = tf.keras.metrics.Precision(name='test_precision') # self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg') # self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos') # self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg') # self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos') # else: # self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') # self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') @tf.function def train_step(self, mini_batch): inputs = [mini_batch[0], mini_batch[1]] labels = mini_batch[2] with tf.GradientTape() as tape: pred = self.model(inputs, training=True) loss = self.loss(labels, pred) total_loss = loss if len(self.model.losses) > 0: reg_loss = tf.math.add_n(self.model.losses) total_loss = loss + reg_loss gradients = tape.gradient(total_loss, self.model.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) if TRACK_MOVING_AVERAGE: self.ema.apply(self.model.trainable_variables) self.train_loss(loss) self.train_accuracy(labels, pred) return loss @tf.function def test_step(self, mini_batch): inputs = [mini_batch[0], mini_batch[1]] labels = mini_batch[2] pred = self.model(inputs, training=False) t_loss = self.loss(labels, pred) self.test_loss(t_loss) self.test_accuracy(labels, pred) # if NumClasses == 2: # self.test_auc(labels, pred) # self.test_recall(labels, pred) # self.test_precision(labels, pred) # self.test_true_neg(labels, pred) # self.test_true_pos(labels, pred) # self.test_false_neg(labels, pred) # self.test_false_pos(labels, pred) def predict(self, mini_batch): inputs = [mini_batch[0], mini_batch[1]] labels = mini_batch[2] pred = self.model(inputs, training=False) t_loss = self.loss(labels, pred) self.test_labels.append(labels) self.test_preds.append(pred.numpy()) self.test_loss(t_loss) self.test_accuracy(labels, pred) # if NumClasses == 2: # self.test_auc(labels, pred) # self.test_recall(labels, pred) # self.test_precision(labels, pred) # self.test_true_neg(labels, pred) # self.test_true_pos(labels, pred) # self.test_false_neg(labels, pred) # self.test_false_pos(labels, pred) def reset_test_metrics(self): self.test_loss.reset_states() self.test_accuracy.reset_states() # if NumClasses == 2: # self.test_auc.reset_states() # self.test_recall.reset_states() # self.test_precision.reset_states() # self.test_true_neg.reset_states() # self.test_true_pos.reset_states() # self.test_false_neg.reset_states() # self.test_false_pos.reset_states() def get_metrics(self): recall = self.test_recall.result() precsn = self.test_precision.result() f1 = 2 * (precsn * recall) / (precsn + recall) tn = self.test_true_neg.result() tp = self.test_true_pos.result() fn = self.test_false_neg.result() fp = self.test_false_pos.result() mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) return f1, mcc def do_training(self, ckpt_dir=None): if ckpt_dir is None: if not os.path.exists(modeldir): os.mkdir(modeldir) ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) else: ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss')) step = 0 total_time = 0 best_test_loss = np.finfo(dtype=np.float).max best_test_acc = 0 best_test_recall = 0 best_test_precision = 0 best_test_auc = 0 best_test_f1 = 0 best_test_mcc = 0 if EARLY_STOP: es = EarlyStop() for epoch in range(NUM_EPOCHS): self.train_loss.reset_states() self.train_accuracy.reset_states() t0 = datetime.datetime.now().timestamp() proc_batch_cnt = 0 n_samples = 0 for data0, data1, label in self.train_dataset: trn_ds = tf.data.Dataset.from_tensor_slices((data0, data1, label)) trn_ds = trn_ds.batch(BATCH_SIZE) for mini_batch in trn_ds: if self.learningRateSchedule is not None: loss = self.train_step(mini_batch) if (step % 100) == 0: with self.writer_train.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step) tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_epochs', epoch, step=step) self.reset_test_metrics() for data0_tst, data1_tst, label_tst in self.test_dataset: tst_ds = tf.data.Dataset.from_tensor_slices((data0_tst, data1_tst, label_tst)) tst_ds = tst_ds.batch(BATCH_SIZE) for mini_batch_test in tst_ds: self.test_step(mini_batch_test) # if NumClasses == 2: # f1, mcc = self.get_metrics() with self.writer_valid.as_default(): tf.summary.scalar('loss_val', self.test_loss.result(), step=step) tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) # if NumClasses == 2: # tf.summary.scalar('auc_val', self.test_auc.result(), step=step) # tf.summary.scalar('recall_val', self.test_recall.result(), step=step) # tf.summary.scalar('prec_val', self.test_precision.result(), step=step) # tf.summary.scalar('f1_val', f1, step=step) # tf.summary.scalar('mcc_val', mcc, step=step) # tf.summary.scalar('num_train_steps', step, step=step) # tf.summary.scalar('num_epochs', epoch, step=step) with self.writer_train_valid_loss.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('loss_val', self.test_loss.result(), step=step) print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.optimizer._decayed_lr('float32').numpy()) step += 1 print('train loss: ', loss.numpy()) proc_batch_cnt += 1 n_samples += data0.shape[0] print('proc_batch_cnt: ', proc_batch_cnt, n_samples) t1 = datetime.datetime.now().timestamp() print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) total_time += (t1-t0) self.reset_test_metrics() for data0, data1, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data0, data1, label)) ds = ds.batch(BATCH_SIZE) for mini_batch in ds: self.test_step(mini_batch) print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) # if NumClasses == 2: # f1, mcc = self.get_metrics() # print('loss, acc, recall, precision, auc, f1, mcc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), # self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy()) # else: # print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) print('------------------------------------------------------') tst_loss = self.test_loss.result().numpy() if tst_loss < best_test_loss: best_test_loss = tst_loss # if NumClasses == 2: # best_test_acc = self.test_accuracy.result().numpy() # best_test_recall = self.test_recall.result().numpy() # best_test_precision = self.test_precision.result().numpy() # best_test_auc = self.test_auc.result().numpy() # best_test_f1 = f1.numpy() # best_test_mcc = mcc.numpy() ckpt_manager.save() if self.DISK_CACHE and epoch == 0: f = open(cachepath, 'wb') pickle.dump(self.in_mem_data_cache, f) f.close() if EARLY_STOP and es.check_stop(tst_loss): break print('total time: ', total_time) self.writer_train.close() self.writer_valid.close() self.writer_train_valid_loss.close() if self.h5f_l1b_trn is not None: self.h5f_l1b_trn.close() if self.h5f_l1b_tst is not None: self.h5f_l1b_tst.close() if self.h5f_l2_trn is not None: self.h5f_l2_trn.close() if self.h5f_l2_tst is not None: self.h5f_l2_tst.close() # f = open(home_dir+'/best_stats_'+now+'.pkl', 'wb') # pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f) # f.close() def build_model(self): self.build_unet() # self.build_upsample() self.model = tf.keras.Model(self.inputs, self.logits) def restore(self, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.reset_test_metrics() for data0, data1, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data0, data1, label)) ds = ds.batch(BATCH_SIZE) for mini_batch_test in ds: self.predict(mini_batch_test) f1, mcc = self.get_metrics() print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy()) labels = np.concatenate(self.test_labels) self.test_labels = labels preds = np.concatenate(self.test_preds) self.test_probs = preds if NumClasses == 2: preds = np.where(preds > 0.5, 1, 0) else: preds = np.argmax(preds, axis=1) self.test_preds = preds def do_evaluate(self, prob_thresh=0.5): self.reset_test_metrics() pred_s = [] for data in self.eval_dataset: print(data[0].shape, data[1].shape) pred = self.model([data]) print(pred.shape, np.histogram(pred.numpy())) preds = np.concatenate(pred_s) preds = preds[:,0] self.test_probs = preds if NumClasses == 2: preds = np.where(preds > prob_thresh, 1, 0) else: preds = np.argmax(preds, axis=1) self.test_preds = preds def run(self, directory): train_data_files = glob.glob(directory+'data_train*.npy') valid_data_files = glob.glob(directory+'data_valid*.npy') train_label_files = glob.glob(directory+'label_train*.npy') valid_label_files = glob.glob(directory+'label_valid*.npy') train_data_files.sort() valid_data_files.sort() train_label_files.sort() valid_label_files.sort() self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, 100000) self.build_model() self.build_training() self.build_evaluation() self.do_training() def run_restore(self, filename_l1b, filename_l2, ckpt_dir): self.setup_test_pipeline(filename_l1b, filename_l2) self.build_model() self.build_training() self.build_evaluation() self.restore(ckpt_dir) if self.h5f_l1b_tst is not None: self.h5f_l1b_tst.close() if self.h5f_l2_tst is not None: self.h5f_l2_tst.close() def run_evaluate(self, filename, ckpt_dir): data_dct, ll, cc = make_for_full_domain_predict(filename, name_list=self.train_params) self.setup_eval_pipeline(data_dct, len(ll)) self.build_model() self.build_training() self.build_evaluation() self.do_evaluate(ckpt_dir) if __name__ == "__main__": nn = UNET() nn.run('matchup_filename')