import glob import tensorflow as tf from util.plot_cm import confusion_matrix_values from util.setup import logdir, modeldir, now, ancillary_path from util.util import EarlyStop, normalize, denormalize, get_grid_values_all import os, datetime import numpy as np import pickle import h5py import xarray as xr import gc AUTOTUNE = tf.data.AUTOTUNE LOG_DEVICE_PLACEMENT = False PROC_BATCH_SIZE = 4 PROC_BATCH_BUFFER_SIZE = 5000 NumClasses = 5 if NumClasses == 2: NumLogits = 1 else: NumLogits = NumClasses BATCH_SIZE = 128 NUM_EPOCHS = 80 TRACK_MOVING_AVERAGE = False EARLY_STOP = True NOISE_TRAINING = False NOISE_STDDEV = 0.01 DO_AUGMENT = False DO_SMOOTH = False SIGMA = 1.0 DO_ZERO_OUT = False # setup scaling parameters dictionary mean_std_dct = {} mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl' f = open(mean_std_file, 'rb') mean_std_dct_l2 = pickle.load(f) f.close() mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl' f = open(mean_std_file, 'rb') mean_std_dct_l1b = pickle.load(f) f.close() mean_std_dct.update(mean_std_dct_l1b) mean_std_dct.update(mean_std_dct_l2) IMG_DEPTH = 1 label_param = 'cloud_probability' params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] data_params_half = ['temp_11_0um_nom'] data_params_full = ['refl_0_65um_nom'] label_idx_i = params_i.index(label_param) label_idx = params.index(label_param) print('data_params_half: ', data_params_half) print('data_params_full: ', data_params_full) print('label_param: ', label_param) KERNEL_SIZE = 3 # target size: (128, 128) X_LEN = Y_LEN = 128 if KERNEL_SIZE == 3: slc_x = slice(1, int(X_LEN/2) + 3) slc_y = slice(1, int(Y_LEN/2) + 3) x_128 = slice(4, X_LEN + 4) y_128 = slice(4, Y_LEN + 4) # ---------------------------------------- def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', kernel_initializer='he_uniform', scale=None, kernel_size=3, do_drop_out=True, drop_rate=0.5, do_batch_norm=True): with tf.name_scope(block_name): skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip) if scale is not None: skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip) if do_drop_out: skip = tf.keras.layers.Dropout(drop_rate)(skip) if do_batch_norm: skip = tf.keras.layers.BatchNormalization()(skip) conv = conv + skip print(block_name+':', conv.shape) return conv def upsample_mean(grd): bsize, ylen, xlen = grd.shape up = np.zeros((bsize, ylen*2, xlen*2)) up[:, ::2, ::2] = grd[:, ::2, ::2] up[:, 1::2, ::2] = grd[:, ::2, ::2] up[:, ::2, 1::2] = grd[:, ::2, ::2] up[:, 1::2, 1::2] = grd[:, ::2, ::2] return up def get_grid_cell_mean(grd_k): # grd_k = np.where(np.isnan(grd_k), 0, grd_k) a = grd_k[:, 0::2, 0::2] b = grd_k[:, 1::2, 0::2] c = grd_k[:, 0::2, 1::2] d = grd_k[:, 1::2, 1::2] mean = np.nanmean([a, b, c, d], axis=0) return mean def get_min_max_std(grd_k): # grd_k = np.where(np.isnan(grd_k), 0, grd_k) a = grd_k[:, 0::2, 0::2] b = grd_k[:, 1::2, 0::2] c = grd_k[:, 0::2, 1::2] d = grd_k[:, 1::2, 1::2] lo = np.nanmin([a, b, c, d], axis=0) hi = np.nanmax([a, b, c, d], axis=0) std = np.nanstd([a, b, c, d], axis=0) avg = np.nanmean([a, b, c, d], axis=0) return lo, hi, std, avg def get_label_data(grd_k): grd_k = np.where(np.isnan(grd_k), 0, grd_k) grd_k = np.where(grd_k < 0.50, 0, 1) a = grd_k[:, 0::2, 0::2] b = grd_k[:, 1::2, 0::2] c = grd_k[:, 0::2, 1::2] d = grd_k[:, 1::2, 1::2] s = a + b + c + d cat_0 = (s == 0) cat_1 = np.logical_and(s > 0, s < 4) cat_2 = (s == 4) s[cat_0] = 0 s[cat_1] = 1 s[cat_2] = 2 return s def get_label_data_5cat(grd_k): grd_k = np.where(np.isnan(grd_k), 0, grd_k) grd_k = np.where(grd_k < 0.5, 0, 1) a = grd_k[:, 0::2, 0::2] b = grd_k[:, 1::2, 0::2] c = grd_k[:, 0::2, 1::2] d = grd_k[:, 1::2, 1::2] s = a + b + c + d cat_0 = (s == 0) cat_1 = (s == 1) cat_2 = (s == 2) cat_3 = (s == 3) cat_4 = (s == 4) s[cat_0] = 0 s[cat_1] = 1 s[cat_2] = 2 s[cat_3] = 3 s[cat_4] = 4 return s class SRCNN: def __init__(self): self.train_data = None self.train_label = None self.test_data = None self.test_label = None self.test_data_denorm = None self.train_dataset = None self.inner_train_dataset = None self.test_dataset = None self.eval_dataset = None self.X_img = None self.X_prof = None self.X_u = None self.X_v = None self.X_sfc = None self.inputs = [] self.y = None self.handle = None self.inner_handle = None self.in_mem_batch = None self.h5f_l1b_trn = None self.h5f_l1b_tst = None self.h5f_l2_trn = None self.h5f_l2_tst = None self.logits = None self.predict_data = None self.predict_dataset = None self.mean_list = None self.std_list = None self.training_op = None self.correct = None self.accuracy = None self.loss = None self.pred_class = None self.variable_averages = None self.global_step = None self.writer_train = None self.writer_valid = None self.writer_train_valid_loss = None self.OUT_OF_RANGE = False self.model = None self.optimizer = None self.ema = None self.train_loss = None self.train_accuracy = None self.test_loss = None self.test_accuracy = None self.test_auc = None self.test_recall = None self.test_precision = None self.test_confusion_matrix = None self.test_true_pos = None self.test_true_neg = None self.test_false_pos = None self.test_false_neg = None self.test_labels = [] self.test_preds = [] self.test_probs = None self.test_input = [] self.learningRateSchedule = None self.num_data_samples = None self.initial_learning_rate = None self.data_dct = None self.train_data_files = None self.train_label_files = None self.test_data_files = None self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 self.n_chans = 5 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) self.inputs.append(self.X_img) tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) def get_in_mem_data_batch(self, idxs, is_training): if is_training: data_files = self.train_data_files label_files = self.train_label_files else: data_files = self.test_data_files label_files = self.test_label_files data_s = [] label_s = [] for k in idxs: f = data_files[k] nda = np.load(f) data_s.append(nda) f = label_files[k] nda = np.load(f) label_s.append(nda) input_data = np.concatenate(data_s) input_label = np.concatenate(label_s) data_norm = [] for param in data_params_half: # If next 2 uncommented, take out get_grid_cell_mean idx = params.index(param) tmp = input_data[:, idx, :, :] # idx = params_i.index(param) # tmp = input_label[:, idx, :, :] # tmp = get_grid_cell_mean(tmp) tmp = tmp[:, slc_y, slc_x] tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) for param in data_params_full: idx = params_i.index(param) tmp = input_label[:, idx, :, :] lo, hi, std, avg = get_min_max_std(tmp) lo = normalize(lo, param, mean_std_dct) hi = normalize(hi, param, mean_std_dct) avg = normalize(avg, param, mean_std_dct) data_norm.append(lo[:, slc_y, slc_x]) data_norm.append(hi[:, slc_y, slc_x]) data_norm.append(avg[:, slc_y, slc_x]) # --------------------------------------------------- # If next uncommented, take out get_grid_cell_mean # tmp = input_data[:, label_idx, :, :] tmp = input_label[:, label_idx_i, :, :] tmp = get_grid_cell_mean(tmp) tmp = tmp[:, slc_y, slc_x] data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3) data = data.astype(np.float32) # ----------------------------------------------------- # ----------------------------------------------------- label = input_label[:, label_idx_i, :, :] label = label[:, y_128, x_128] if NumClasses == 5: label = get_label_data_5cat(label) else: label = get_label_data(label) label = np.where(np.isnan(label), 0, label) label = np.expand_dims(label, axis=3) data = data.astype(np.float32) label = label.astype(np.float32) if is_training and DO_AUGMENT: data_ud = np.flip(data, axis=1) label_ud = np.flip(label, axis=1) data_lr = np.flip(data, axis=2) label_lr = np.flip(label, axis=2) data = np.concatenate([data, data_ud, data_lr]) label = np.concatenate([label, label_ud, label_lr]) return data, label def get_in_mem_data_batch_train(self, idxs): return self.get_in_mem_data_batch(idxs, True) def get_in_mem_data_batch_test(self, idxs): return self.get_in_mem_data_batch(idxs, False) @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32]) return out @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function_test(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32]) return out def get_train_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=AUTOTUNE) dataset = dataset.cache() if DO_AUGMENT: dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) dataset = dataset.prefetch(buffer_size=AUTOTUNE) self.train_dataset = dataset def get_test_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function_test, num_parallel_calls=AUTOTUNE) dataset = dataset.cache() self.test_dataset = dataset def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples): self.train_data_files = train_data_files self.train_label_files = train_label_files self.test_data_files = test_data_files self.test_label_files = test_label_files trn_idxs = np.arange(len(train_data_files)) np.random.shuffle(trn_idxs) tst_idxs = np.arange(len(test_data_files)) self.get_train_dataset(trn_idxs) self.get_test_dataset(tst_idxs) self.num_data_samples = num_train_samples # approximately print('datetime: ', now) print('training and test data: ') print('---------------------------') print('num train samples: ', self.num_data_samples) print('BATCH SIZE: ', BATCH_SIZE) print('num test samples: ', tst_idxs.shape[0]) print('setup_pipeline: Done') def setup_test_pipeline(self, test_data_files, test_label_files): self.test_data_files = test_data_files self.test_label_files = test_label_files tst_idxs = np.arange(len(test_data_files)) self.get_test_dataset(tst_idxs) print('setup_test_pipeline: Done') def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2): print('build_cnn') padding = "SAME" # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.relu momentum = 0.99 num_filters = 64 input_2d = self.inputs[0] print('input: ', input_2d.shape) conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d) print(conv.shape) # if NOISE_TRAINING: # conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv) scale = 0.2 conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale) conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b) # conv = conv + conv_b conv = conv_b print(conv.shape) if NumClasses == 2: final_activation = tf.nn.sigmoid # For binary else: final_activation = tf.nn.softmax # For multi-class # This is effectively a Dense layer self.logits = tf.keras.layers.Conv2D(NumLogits, kernel_size=1, strides=1, padding=padding, activation=final_activation)(conv) print(self.logits.shape) def build_training(self): if NumClasses == 2: self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only else: self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class # self.loss = tf.keras.losses.MeanAbsoluteError() # Regression # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) initial_learning_rate = 0.002 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch decay_steps = int(steps_per_epoch) * 4 print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) if TRACK_MOVING_AVERAGE: # Not sure that this works properly (from tfa) # optimizer = tfa.optimizers.MovingAverage(optimizer) self.ema = tf.train.ExponentialMovingAverage(decay=0.9999) self.optimizer = optimizer self.initial_learning_rate = initial_learning_rate def build_evaluation(self): self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss') if NumClasses == 2: self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy') self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy') self.test_auc = tf.keras.metrics.AUC(name='test_auc') self.test_recall = tf.keras.metrics.Recall(name='test_recall') self.test_precision = tf.keras.metrics.Precision(name='test_precision') self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg') self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos') self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg') self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos') else: self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) def train_step(self, inputs, labels): labels = tf.squeeze(labels, axis=[3]) with tf.GradientTape() as tape: pred = self.model([inputs], training=True) loss = self.loss(labels, pred) total_loss = loss if len(self.model.losses) > 0: reg_loss = tf.math.add_n(self.model.losses) total_loss = loss + reg_loss gradients = tape.gradient(total_loss, self.model.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) if TRACK_MOVING_AVERAGE: self.ema.apply(self.model.trainable_variables) self.train_loss(loss) self.train_accuracy(labels, pred) return loss @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) def test_step(self, inputs, labels): labels = tf.squeeze(labels, axis=[3]) pred = self.model([inputs], training=False) t_loss = self.loss(labels, pred) self.test_loss(t_loss) self.test_accuracy(labels, pred) # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) # decorator commented out because pred.numpy(): pred not evaluated yet. def predict(self, inputs, labels): pred = self.model([inputs], training=False) # t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred) t_loss = self.loss(labels, pred) self.test_labels.append(labels) self.test_preds.append(pred.numpy()) self.test_input.append(inputs) self.test_loss(t_loss) self.test_accuracy(labels, pred) def reset_test_metrics(self): self.test_loss.reset_states() self.test_accuracy.reset_states() def get_metrics(self): recall = self.test_recall.result() precsn = self.test_precision.result() f1 = 2 * (precsn * recall) / (precsn + recall) tn = self.test_true_neg.result() tp = self.test_true_pos.result() fn = self.test_false_neg.result() fp = self.test_false_pos.result() mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) return f1, mcc def do_training(self, ckpt_dir=None): if ckpt_dir is None: if not os.path.exists(modeldir): os.mkdir(modeldir) ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) else: ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss')) step = 0 total_time = 0 best_test_loss = np.finfo(dtype=np.float).max if EARLY_STOP: es = EarlyStop() for epoch in range(NUM_EPOCHS): self.train_loss.reset_states() self.train_accuracy.reset_states() t0 = datetime.datetime.now().timestamp() proc_batch_cnt = 0 n_samples = 0 for data, label in self.train_dataset: trn_ds = tf.data.Dataset.from_tensor_slices((data, label)) trn_ds = trn_ds.batch(BATCH_SIZE) for mini_batch in trn_ds: if self.learningRateSchedule is not None: loss = self.train_step(mini_batch[0], mini_batch[1]) if (step % 100) == 0: with self.writer_train.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step) tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_epochs', epoch, step=step) self.reset_test_metrics() for data_tst, label_tst in self.test_dataset: tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst)) tst_ds = tst_ds.batch(BATCH_SIZE) for mini_batch_test in tst_ds: self.test_step(mini_batch_test[0], mini_batch_test[1]) with self.writer_valid.as_default(): tf.summary.scalar('loss_val', self.test_loss.result(), step=step) tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) with self.writer_train_valid_loss.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('loss_val', self.test_loss.result(), step=step) print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.optimizer._decayed_lr('float32').numpy()) step += 1 print('train loss: ', loss.numpy()) proc_batch_cnt += 1 n_samples += data.shape[0] print('proc_batch_cnt: ', proc_batch_cnt, n_samples) t1 = datetime.datetime.now().timestamp() print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) total_time += (t1-t0) self.reset_test_metrics() for data, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data, label)) ds = ds.batch(BATCH_SIZE) for mini_batch in ds: self.test_step(mini_batch[0], mini_batch[1]) print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) print('------------------------------------------------------') tst_loss = self.test_loss.result().numpy() if tst_loss < best_test_loss: best_test_loss = tst_loss ckpt_manager.save() if EARLY_STOP and es.check_stop(tst_loss): break print('total time: ', total_time) self.writer_train.close() self.writer_valid.close() self.writer_train_valid_loss.close() def build_model(self): self.build_srcnn() self.model = tf.keras.Model(self.inputs, self.logits) def restore(self, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.reset_test_metrics() for data, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data, label)) ds = ds.batch(BATCH_SIZE) for mini_batch_test in ds: self.predict(mini_batch_test[0], mini_batch_test[1]) print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) labels = np.concatenate(self.test_labels) preds = np.concatenate(self.test_preds) inputs = np.concatenate(self.test_input) print(labels.shape, preds.shape) return labels, preds, inputs def do_evaluate(self, inputs, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.reset_test_metrics() pred = self.model([inputs], training=False) self.test_probs = pred pred = pred.numpy() return pred def run(self, directory, ckpt_dir=None, num_data_samples=50000): train_data_files = glob.glob(directory+'train*mres*.npy') valid_data_files = glob.glob(directory+'valid*mres*.npy') train_label_files = glob.glob(directory+'train*ires*.npy') valid_label_files = glob.glob(directory+'valid*ires*.npy') self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples) self.build_model() self.build_training() self.build_evaluation() self.do_training(ckpt_dir=ckpt_dir) def run_restore(self, directory, ckpt_dir): self.num_data_samples = 1000 valid_data_files = glob.glob(directory + 'valid*mres*.npy') valid_label_files = glob.glob(directory + 'valid*ires*.npy') self.setup_test_pipeline(valid_data_files, valid_label_files) self.build_model() self.build_training() self.build_evaluation() return self.restore(ckpt_dir) def run_evaluate(self, data, ckpt_dir): # data = tf.convert_to_tensor(data, dtype=tf.float32) self.num_data_samples = 80000 self.build_model() self.build_training() self.build_evaluation() return self.do_evaluate(data, ckpt_dir) def run_restore_static(directory, ckpt_dir, out_file=None): nn = SRCNN() labels, preds, inputs = nn.run_restore(directory, ckpt_dir) if out_file is not None: np.save(out_file, [np.squeeze(labels), preds.argmax(axis=3), denormalize(inputs[:, 1:65, 1:65, 0], 'temp_11_0um_nom', mean_std_dct), denormalize(inputs[:, 1:65, 1:65, 1], 'refl_0_65um_nom', mean_std_dct), denormalize(inputs[:, 1:65, 1:65, 2], 'refl_0_65um_nom', mean_std_dct), denormalize(inputs[:, 1:65, 1:65, 3], 'refl_0_65um_nom', mean_std_dct), inputs[:, 1:65, 1:65, 4]]) def run_evaluate_static(in_file, out_file, ckpt_dir): gc.collect() h5f = h5py.File(in_file, 'r') bt = get_grid_values_all(h5f, 'orig/temp_11_0um') y_len, x_len = bt.shape[0], bt.shape[1] lons = get_grid_values_all(h5f, 'orig/longitude') lats = get_grid_values_all(h5f, 'orig/latitude') bt = np.where(np.isnan(bt), 0, bt) bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct) refl = get_grid_values_all(h5f, 'super/refl_0_65um') refl = np.where(np.isnan(refl), 0, refl) refl = np.expand_dims(refl, axis=0) refl_lo, refl_hi, refl_std, refl_avg = get_min_max_std(refl) refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct) refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct) refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct) refl_lo = np.squeeze(refl_lo) refl_hi = np.squeeze(refl_hi) refl_avg = np.squeeze(refl_avg) cp = get_grid_values_all(h5f, 'orig/'+label_param) cp = np.where(np.isnan(cp), 0, cp) data = np.stack([bt, refl_lo, refl_hi, refl_avg, cp], axis=2) data = np.expand_dims(data, axis=0) h5f.close() nn = SRCNN() probs = nn.run_evaluate(data, ckpt_dir) cld_frac = probs.argmax(axis=3) cld_frac = cld_frac.astype(np.int8) cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8) border = int((KERNEL_SIZE - 1)/2) cld_frac_out[border:y_len - border, border:x_len - border] = cld_frac[0, :, :] bt = denormalize(bt, 'temp_11_0um_nom', mean_std_dct) refl_avg = denormalize(refl_avg, 'refl_0_65um_nom', mean_std_dct) var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um'] dims = ['num_params', 'y', 'x'] da = xr.DataArray(np.stack([cld_frac_out, bt, refl_avg], axis=0), dims=dims) da.assign_coords({ 'num_params': var_names, 'lat': (['y', 'x'], lats), 'lon': (['y', 'x'], lons) }) if out_file is not None: np.save(out_file, (cld_frac_out, bt, refl_avg, cp, lons, lats)) else: return [cld_frac_out, bt, refl_avg, cp, lons, lats] def analyze_3cat(file): tup = np.load(file, allow_pickle=True) lbls = tup[0] pred = tup[1] lbls = lbls.flatten() pred = pred.flatten() print(np.sum(lbls == 0), np.sum(lbls == 1), np.sum(lbls == 2)) msk_0_1 = lbls != 2 msk_1_2 = lbls != 0 msk_0_2 = lbls != 1 lbls_0_1 = lbls[msk_0_1] pred_0_1 = pred[msk_0_1] pred_0_1 = np.where(pred_0_1 == 2, 1, pred_0_1) # ---- lbls_1_2 = lbls[msk_1_2] lbls_1_2 = np.where(lbls_1_2 == 1, 0, lbls_1_2) lbls_1_2 = np.where(lbls_1_2 == 2, 1, lbls_1_2) pred_1_2 = pred[msk_1_2] pred_1_2 = np.where(pred_1_2 == 0, -9, pred_1_2) pred_1_2 = np.where(pred_1_2 == 1, 0, pred_1_2) pred_1_2 = np.where(pred_1_2 == 2, 1, pred_1_2) pred_1_2 = np.where(pred_1_2 == -9, 1, pred_1_2) # ---- lbls_0_2 = lbls[msk_0_2] lbls_0_2 = np.where(lbls_0_2 == 2, 1, lbls_0_2) pred_0_2 = pred[msk_0_2] pred_0_2 = np.where(pred_0_2 == 2, 1, pred_0_2) cm_0_1 = confusion_matrix_values(lbls_0_1, pred_0_1) cm_1_2 = confusion_matrix_values(lbls_1_2, pred_1_2) cm_0_2 = confusion_matrix_values(lbls_0_2, pred_0_2) true_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 0) false_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 0) true_no_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 1) false_no_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 1) true_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 0) false_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 0) true_no_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 1) false_no_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 1) true_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 0) false_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 0) true_no_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 1) false_no_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 1) tp_0 = np.sum(true_0_1).astype(np.float64) tp_1 = np.sum(true_1_2).astype(np.float64) tp_2 = np.sum(true_0_2).astype(np.float64) tn_0 = np.sum(true_no_0_1).astype(np.float64) tn_1 = np.sum(true_no_1_2).astype(np.float64) tn_2 = np.sum(true_no_0_2).astype(np.float64) fp_0 = np.sum(false_0_1).astype(np.float64) fp_1 = np.sum(false_1_2).astype(np.float64) fp_2 = np.sum(false_0_2).astype(np.float64) fn_0 = np.sum(false_no_0_1).astype(np.float64) fn_1 = np.sum(false_no_1_2).astype(np.float64) fn_2 = np.sum(false_no_0_2).astype(np.float64) recall_0 = tp_0 / (tp_0 + fn_0) recall_1 = tp_1 / (tp_1 + fn_1) recall_2 = tp_2 / (tp_2 + fn_2) precision_0 = tp_0 / (tp_0 + fp_0) precision_1 = tp_1 / (tp_1 + fp_1) precision_2 = tp_2 / (tp_2 + fp_2) mcc_0 = ((tp_0 * tn_0) - (fp_0 * fn_0)) / np.sqrt((tp_0 + fp_0) * (tp_0 + fn_0) * (tn_0 + fp_0) * (tn_0 + fn_0)) mcc_1 = ((tp_1 * tn_1) - (fp_1 * fn_1)) / np.sqrt((tp_1 + fp_1) * (tp_1 + fn_1) * (tn_1 + fp_1) * (tn_1 + fn_1)) mcc_2 = ((tp_2 * tn_2) - (fp_2 * fn_2)) / np.sqrt((tp_2 + fp_2) * (tp_2 + fn_2) * (tn_2 + fp_2) * (tn_2 + fn_2)) acc_0 = np.sum(lbls_0_1 == pred_0_1)/pred_0_1.size acc_1 = np.sum(lbls_1_2 == pred_1_2)/pred_1_2.size acc_2 = np.sum(lbls_0_2 == pred_0_2)/pred_0_2.size print(acc_0, recall_0, precision_0, mcc_0) print(acc_1, recall_1, precision_1, mcc_1) print(acc_2, recall_2, precision_2, mcc_2) return cm_0_1, cm_1_2, cm_0_2, [acc_0, acc_1, acc_2], [recall_0, recall_1, recall_2],\ [precision_0, precision_1, precision_2], [mcc_0, mcc_1, mcc_2] def analyze_5cat(file): tup = np.load(file, allow_pickle=True) lbls = tup[0] pred = tup[1] lbls = lbls.flatten() pred = pred.flatten() np.histogram(lbls, bins=5) np.histogram(pred, bins=5) new_lbls = np.zeros(lbls.size, dtype=np.int32) new_pred = np.zeros(pred.size, dtype=np.int32) new_lbls[lbls == 0] = 0 new_lbls[lbls == 1] = 1 new_lbls[lbls == 2] = 1 new_lbls[lbls == 3] = 1 new_lbls[lbls == 4] = 2 new_pred[pred == 0] = 0 new_pred[pred == 1] = 1 new_pred[pred == 2] = 1 new_pred[pred == 3] = 1 new_pred[pred == 4] = 2 np.histogram(new_lbls, bins=3) np.histogram(new_pred, bins=3) lbls = new_lbls pred = new_pred print(np.sum(lbls == 0), np.sum(lbls == 1), np.sum(lbls == 2)) msk_0_1 = lbls != 2 msk_1_2 = lbls != 0 msk_0_2 = lbls != 1 lbls_0_1 = lbls[msk_0_1] pred_0_1 = pred[msk_0_1] pred_0_1 = np.where(pred_0_1 == 2, 1, pred_0_1) # ---------------------------------------------- lbls_1_2 = lbls[msk_1_2] lbls_1_2 = np.where(lbls_1_2 == 1, 0, lbls_1_2) lbls_1_2 = np.where(lbls_1_2 == 2, 1, lbls_1_2) pred_1_2 = pred[msk_1_2] pred_1_2 = np.where(pred_1_2 == 0, -9, pred_1_2) pred_1_2 = np.where(pred_1_2 == 1, 0, pred_1_2) pred_1_2 = np.where(pred_1_2 == 2, 1, pred_1_2) pred_1_2 = np.where(pred_1_2 == -9, 1, pred_1_2) # ----------------------------------------------- lbls_0_2 = lbls[msk_0_2] lbls_0_2 = np.where(lbls_0_2 == 2, 1, lbls_0_2) pred_0_2 = pred[msk_0_2] pred_0_2 = np.where(pred_0_2 == 2, 1, pred_0_2) cm_0_1 = confusion_matrix_values(lbls_0_1, pred_0_1) cm_1_2 = confusion_matrix_values(lbls_1_2, pred_1_2) cm_0_2 = confusion_matrix_values(lbls_0_2, pred_0_2) true_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 0) false_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 0) true_no_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 1) false_no_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 1) true_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 0) false_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 0) true_no_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 1) false_no_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 1) true_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 0) false_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 0) true_no_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 1) false_no_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 1) tp_0 = np.sum(true_0_1).astype(np.float64) tp_1 = np.sum(true_1_2).astype(np.float64) tp_2 = np.sum(true_0_2).astype(np.float64) tn_0 = np.sum(true_no_0_1).astype(np.float64) tn_1 = np.sum(true_no_1_2).astype(np.float64) tn_2 = np.sum(true_no_0_2).astype(np.float64) fp_0 = np.sum(false_0_1).astype(np.float64) fp_1 = np.sum(false_1_2).astype(np.float64) fp_2 = np.sum(false_0_2).astype(np.float64) fn_0 = np.sum(false_no_0_1).astype(np.float64) fn_1 = np.sum(false_no_1_2).astype(np.float64) fn_2 = np.sum(false_no_0_2).astype(np.float64) recall_0 = tp_0 / (tp_0 + fn_0) recall_1 = tp_1 / (tp_1 + fn_1) recall_2 = tp_2 / (tp_2 + fn_2) precision_0 = tp_0 / (tp_0 + fp_0) precision_1 = tp_1 / (tp_1 + fp_1) precision_2 = tp_2 / (tp_2 + fp_2) mcc_0 = ((tp_0 * tn_0) - (fp_0 * fn_0)) / np.sqrt((tp_0 + fp_0) * (tp_0 + fn_0) * (tn_0 + fp_0) * (tn_0 + fn_0)) mcc_1 = ((tp_1 * tn_1) - (fp_1 * fn_1)) / np.sqrt((tp_1 + fp_1) * (tp_1 + fn_1) * (tn_1 + fp_1) * (tn_1 + fn_1)) mcc_2 = ((tp_2 * tn_2) - (fp_2 * fn_2)) / np.sqrt((tp_2 + fp_2) * (tp_2 + fn_2) * (tn_2 + fp_2) * (tn_2 + fn_2)) acc_0 = np.sum(lbls_0_1 == pred_0_1)/pred_0_1.size acc_1 = np.sum(lbls_1_2 == pred_1_2)/pred_1_2.size acc_2 = np.sum(lbls_0_2 == pred_0_2)/pred_0_2.size print(acc_0, recall_0, precision_0, mcc_0) print(acc_1, recall_1, precision_1, mcc_1) print(acc_2, recall_2, precision_2, mcc_2) return cm_0_1, cm_1_2, cm_0_2, [acc_0, acc_1, acc_2], [recall_0, recall_1, recall_2],\ [precision_0, precision_1, precision_2], [mcc_0, mcc_1, mcc_2], lbls, pred # from util.plot_cm import * # from sklearn.metrics import confusion_matrix # import numpy as np # tup = np.load('/Users/tomrink/cld_frac_viirs.npy', allow_pickle=True) # lbls = tup[0] # pred = tup[1] # bt = tup[2] # refl_lo = tup[3] # refl_hi = tup[4] # refl_avg = tup[5] # cld_prob = tup[6] # from util.plot import plot_image # cm = confusion_matrix(lbls.flatten(), pred.flatten()) # plot_confusion_matrix(cm, ['CLR', '0.13', '0.31', '0.50', '0.69', '0.88', 'CLD'], normalize=True, axis=0) # # plot_confusion_matrix(cm, ['CLR', '1/4', '1/2', '3/4', 'CLD'], normalize=True, axis=0) # lbls = lbls.flatten() # pred = pred.flatten() # cld_prob = cld_prob.flatten() # cat_0 = lbls == 0 # cat_1 = lbls == 1 # cat_2 = lbls == 2 # cat_3 = lbls == 3 # cat_4 = lbls == 4 # cat_5 = lbls == 5 # cat_6 = lbls == 6 # plt.hist(cld_prob[cat_0], log=True, histtype='step') # plt.hist(cld_prob[cat_1], log=True, histtype='step') # plt.hist(cld_prob[cat_2], log=True, histtype='step') # plt.hist(cld_prob[cat_3], log=True, histtype='step') # plt.hist(cld_prob[cat_4], log=True, histtype='step') # plt.hist(cld_prob[cat_5], log=True, histtype='step') # plt.hist(cld_prob[cat_6], log=True, histtype='step') # from deeplearning.cloud_fraction_fcn_viirs import run_evaluate_static # run_evaluate_static('/Users/tomrink/clavrx_VNP02IMG.A2019306.1912.001.2019307003236.uwssec.nc', # '/Users/tomrink/cld_frac_A2019306.1912', '/Users/tomrink/tf_model_cld_frac_viirs/run-20230421193944/') # import numpy as np # tup = np.load('/Users/tomrink/cld_frac_A2019306.1912.npy', allow_pickle=True) # cfrac = tup[0] # bt = tup[1] # refl = tup[2] # cp = tup[3] # from util.plot import plot_image # from deeplearning.cloud_fraction_fcn_viirs import analyze_5cat # cm_0_1, cm_1_2, cm_0_2, acc, recall, prec, mcc, lbls, pred = analyze_5cat('/Users/tomrink/cld_frac_viirs.npy') # from util.bar_plot import do_plot # do_plot(['ACC', 'RECALL', 'PREC', 'MCC'], [[acc[0], recall[0], prec[0], mcc[0]], # [acc[1], recall[1], prec[1], mcc[1]], # [acc[2], recall[2], prec[2], mcc[2]]], # ['CLR v MIX', 'MIX v CLD', 'CLR v CLD'], ['green', 'blue', 'black'], # title='CLD FRAC', xlabel='Metric', barWidth=0.15, ylim=[0.4, 1.0]) if __name__ == "__main__": nn = SRCNN() nn.run('matchup_filename')