import glob
import tensorflow as tf

from util.plot_cm import confusion_matrix_values
from util.setup import logdir, modeldir, now, ancillary_path
from util.util import EarlyStop, normalize, denormalize, get_grid_values_all
import os, datetime
import numpy as np
import pickle
import h5py
import xarray as xr
import gc

AUTOTUNE = tf.data.AUTOTUNE

LOG_DEVICE_PLACEMENT = False

PROC_BATCH_SIZE = 4
PROC_BATCH_BUFFER_SIZE = 5000

NumClasses = 5
if NumClasses == 2:
    NumLogits = 1
else:
    NumLogits = NumClasses

BATCH_SIZE = 128
NUM_EPOCHS = 80

TRACK_MOVING_AVERAGE = False
EARLY_STOP = True

NOISE_TRAINING = False
NOISE_STDDEV = 0.01
DO_AUGMENT = False

DO_SMOOTH = False
SIGMA = 1.0
DO_ZERO_OUT = False

# setup scaling parameters dictionary
mean_std_dct = {}
mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l2 = pickle.load(f)
f.close()

mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l1b = pickle.load(f)
f.close()

mean_std_dct.update(mean_std_dct_l1b)
mean_std_dct.update(mean_std_dct_l2)

IMG_DEPTH = 1

label_param = 'cloud_probability'

params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param]
params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param]
data_params_half = ['temp_11_0um_nom']
data_params_full = ['refl_0_65um_nom']

label_idx_i = params_i.index(label_param)
label_idx = params.index(label_param)

print('data_params_half: ', data_params_half)
print('data_params_full: ', data_params_full)
print('label_param: ', label_param)

KERNEL_SIZE = 3  # target size: (128, 128)
X_LEN = Y_LEN = 128

if KERNEL_SIZE == 3:
    slc_x = slice(1, int(X_LEN/2) + 3)
    slc_y = slice(1, int(Y_LEN/2) + 3)
    x_128 = slice(4, X_LEN + 4)
    y_128 = slice(4, Y_LEN + 4)
# ----------------------------------------


def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME',
                                kernel_initializer='he_uniform', scale=None, kernel_size=3,
                                do_drop_out=True, drop_rate=0.5, do_batch_norm=True):

    with tf.name_scope(block_name):
        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv)
        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip)

        if scale is not None:
            skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip)

        if do_drop_out:
            skip = tf.keras.layers.Dropout(drop_rate)(skip)

        if do_batch_norm:
            skip = tf.keras.layers.BatchNormalization()(skip)

        conv = conv + skip
        print(block_name+':', conv.shape)

    return conv


def upsample_mean(grd):
    bsize, ylen, xlen = grd.shape
    up = np.zeros((bsize, ylen*2, xlen*2))

    up[:, ::2, ::2] = grd[:, ::2, ::2]
    up[:, 1::2, ::2] = grd[:, ::2, ::2]
    up[:, ::2, 1::2] = grd[:, ::2, ::2]
    up[:, 1::2, 1::2] = grd[:, ::2, ::2]

    return up


def get_grid_cell_mean(grd_k):
    # grd_k = np.where(np.isnan(grd_k), 0, grd_k)
    a = grd_k[:, 0::2, 0::2]
    b = grd_k[:, 1::2, 0::2]
    c = grd_k[:, 0::2, 1::2]
    d = grd_k[:, 1::2, 1::2]
    mean = np.nanmean([a, b, c, d], axis=0)

    return mean


def get_min_max_std(grd_k):
    # grd_k = np.where(np.isnan(grd_k), 0, grd_k)
    a = grd_k[:, 0::2, 0::2]
    b = grd_k[:, 1::2, 0::2]
    c = grd_k[:, 0::2, 1::2]
    d = grd_k[:, 1::2, 1::2]

    lo = np.nanmin([a, b, c, d], axis=0)
    hi = np.nanmax([a, b, c, d], axis=0)
    std = np.nanstd([a, b, c, d], axis=0)
    avg = np.nanmean([a, b, c, d], axis=0)

    return lo, hi, std, avg


def get_label_data(grd_k):
    grd_k = np.where(np.isnan(grd_k), 0, grd_k)
    grd_k = np.where(grd_k < 0.50, 0, 1)

    a = grd_k[:, 0::2, 0::2]
    b = grd_k[:, 1::2, 0::2]
    c = grd_k[:, 0::2, 1::2]
    d = grd_k[:, 1::2, 1::2]
    s = a + b + c + d

    cat_0 = (s == 0)
    cat_1 = np.logical_and(s > 0, s < 4)
    cat_2 = (s == 4)
    s[cat_0] = 0
    s[cat_1] = 1
    s[cat_2] = 2

    return s


def get_label_data_5cat(grd_k):
    grd_k = np.where(np.isnan(grd_k), 0, grd_k)
    grd_k = np.where(grd_k < 0.5, 0, 1)

    a = grd_k[:, 0::2, 0::2]
    b = grd_k[:, 1::2, 0::2]
    c = grd_k[:, 0::2, 1::2]
    d = grd_k[:, 1::2, 1::2]
    s = a + b + c + d

    cat_0 = (s == 0)
    cat_1 = (s == 1)
    cat_2 = (s == 2)
    cat_3 = (s == 3)
    cat_4 = (s == 4)

    s[cat_0] = 0
    s[cat_1] = 1
    s[cat_2] = 2
    s[cat_3] = 3
    s[cat_4] = 4

    return s


class SRCNN:
    
    def __init__(self):

        self.train_data = None
        self.train_label = None
        self.test_data = None
        self.test_label = None
        self.test_data_denorm = None
        
        self.train_dataset = None
        self.inner_train_dataset = None
        self.test_dataset = None
        self.eval_dataset = None
        self.X_img = None
        self.X_prof = None
        self.X_u = None
        self.X_v = None
        self.X_sfc = None
        self.inputs = []
        self.y = None
        self.handle = None
        self.inner_handle = None
        self.in_mem_batch = None

        self.h5f_l1b_trn = None
        self.h5f_l1b_tst = None
        self.h5f_l2_trn = None
        self.h5f_l2_tst = None

        self.logits = None

        self.predict_data = None
        self.predict_dataset = None
        self.mean_list = None
        self.std_list = None
        
        self.training_op = None
        self.correct = None
        self.accuracy = None
        self.loss = None
        self.pred_class = None
        self.variable_averages = None

        self.global_step = None

        self.writer_train = None
        self.writer_valid = None
        self.writer_train_valid_loss = None

        self.OUT_OF_RANGE = False

        self.model = None
        self.optimizer = None
        self.ema = None
        self.train_loss = None
        self.train_accuracy = None
        self.test_loss = None
        self.test_accuracy = None
        self.test_auc = None
        self.test_recall = None
        self.test_precision = None
        self.test_confusion_matrix = None
        self.test_true_pos = None
        self.test_true_neg = None
        self.test_false_pos = None
        self.test_false_neg = None

        self.test_labels = []
        self.test_preds = []
        self.test_probs = None
        self.test_input = []

        self.learningRateSchedule = None
        self.num_data_samples = None
        self.initial_learning_rate = None

        self.data_dct = None
        self.train_data_files = None
        self.train_label_files = None
        self.test_data_files = None
        self.test_label_files = None

        # self.n_chans = len(data_params_half) + len(data_params_full) + 1
        self.n_chans = 5

        self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))

        self.inputs.append(self.X_img)

        tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)

    def get_in_mem_data_batch(self, idxs, is_training):
        if is_training:
            data_files = self.train_data_files
            label_files = self.train_label_files
        else:
            data_files = self.test_data_files
            label_files = self.test_label_files

        data_s = []
        label_s = []
        for k in idxs:
            f = data_files[k]
            nda = np.load(f)
            data_s.append(nda)

            f = label_files[k]
            nda = np.load(f)
            label_s.append(nda)
        input_data = np.concatenate(data_s)
        input_label = np.concatenate(label_s)

        data_norm = []
        for param in data_params_half:
            # If next 2 uncommented, take out get_grid_cell_mean
            idx = params.index(param)
            tmp = input_data[:, idx, :, :]
            # idx = params_i.index(param)
            # tmp = input_label[:, idx, :, :]
            # tmp = get_grid_cell_mean(tmp)
            tmp = tmp[:, slc_y, slc_x]
            tmp = normalize(tmp, param, mean_std_dct)
            data_norm.append(tmp)

        for param in data_params_full:
            idx = params_i.index(param)
            tmp = input_label[:, idx, :, :]

            lo, hi, std, avg = get_min_max_std(tmp)
            lo = normalize(lo, param, mean_std_dct)
            hi = normalize(hi, param, mean_std_dct)
            avg = normalize(avg, param, mean_std_dct)

            data_norm.append(lo[:, slc_y, slc_x])
            data_norm.append(hi[:, slc_y, slc_x])
            data_norm.append(avg[:, slc_y, slc_x])
        # ---------------------------------------------------
        # If next uncommented, take out get_grid_cell_mean
        # tmp = input_data[:, label_idx, :, :]
        tmp = input_label[:, label_idx_i, :, :]
        tmp = get_grid_cell_mean(tmp)
        tmp = tmp[:, slc_y, slc_x]
        data_norm.append(tmp)
        # ---------
        data = np.stack(data_norm, axis=3)
        data = data.astype(np.float32)

        # -----------------------------------------------------
        # -----------------------------------------------------
        label = input_label[:, label_idx_i, :, :]
        label = label[:, y_128, x_128]
        if NumClasses == 5:
            label = get_label_data_5cat(label)
        else:
            label = get_label_data(label)

        label = np.where(np.isnan(label), 0, label)
        label = np.expand_dims(label, axis=3)

        data = data.astype(np.float32)
        label = label.astype(np.float32)

        if is_training and DO_AUGMENT:
            data_ud = np.flip(data, axis=1)
            label_ud = np.flip(label, axis=1)

            data_lr = np.flip(data, axis=2)
            label_lr = np.flip(label, axis=2)

            data = np.concatenate([data, data_ud, data_lr])
            label = np.concatenate([label, label_ud, label_lr])

        return data, label

    def get_in_mem_data_batch_train(self, idxs):
        return self.get_in_mem_data_batch(idxs, True)

    def get_in_mem_data_batch_test(self, idxs):
        return self.get_in_mem_data_batch(idxs, False)

    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
    def data_function(self, indexes):
        out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32])
        return out

    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
    def data_function_test(self, indexes):
        out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32])
        return out

    def get_train_dataset(self, indexes):
        indexes = list(indexes)

        dataset = tf.data.Dataset.from_tensor_slices(indexes)
        dataset = dataset.batch(PROC_BATCH_SIZE)
        dataset = dataset.map(self.data_function, num_parallel_calls=AUTOTUNE)
        dataset = dataset.cache()
        if DO_AUGMENT:
            dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
        dataset = dataset.prefetch(buffer_size=AUTOTUNE)
        self.train_dataset = dataset

    def get_test_dataset(self, indexes):
        indexes = list(indexes)

        dataset = tf.data.Dataset.from_tensor_slices(indexes)
        dataset = dataset.batch(PROC_BATCH_SIZE)
        dataset = dataset.map(self.data_function_test, num_parallel_calls=AUTOTUNE)
        dataset = dataset.cache()
        self.test_dataset = dataset

    def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
        self.train_data_files = train_data_files
        self.train_label_files = train_label_files
        self.test_data_files = test_data_files
        self.test_label_files = test_label_files

        trn_idxs = np.arange(len(train_data_files))
        np.random.shuffle(trn_idxs)

        tst_idxs = np.arange(len(test_data_files))

        self.get_train_dataset(trn_idxs)
        self.get_test_dataset(tst_idxs)

        self.num_data_samples = num_train_samples  # approximately

        print('datetime: ', now)
        print('training and test data: ')
        print('---------------------------')
        print('num train samples: ', self.num_data_samples)
        print('BATCH SIZE: ', BATCH_SIZE)
        print('num test samples: ', tst_idxs.shape[0])
        print('setup_pipeline: Done')

    def setup_test_pipeline(self, test_data_files, test_label_files):
        self.test_data_files = test_data_files
        self.test_label_files = test_label_files
        tst_idxs = np.arange(len(test_data_files))
        self.get_test_dataset(tst_idxs)
        print('setup_test_pipeline: Done')

    def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2):
        print('build_cnn')
        padding = "SAME"

        # activation = tf.nn.relu
        # activation = tf.nn.elu
        activation = tf.nn.relu
        momentum = 0.99

        num_filters = 64

        input_2d = self.inputs[0]
        print('input: ', input_2d.shape)

        conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d)
        print(conv.shape)

        # if NOISE_TRAINING:
        #     conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)

        scale = 0.2

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b)

        # conv = conv + conv_b
        conv = conv_b
        print(conv.shape)

        if NumClasses == 2:
            final_activation = tf.nn.sigmoid  # For binary
        else:
            final_activation = tf.nn.softmax  # For multi-class

        # This is effectively a Dense layer
        self.logits = tf.keras.layers.Conv2D(NumLogits, kernel_size=1, strides=1, padding=padding, activation=final_activation)(conv)
        print(self.logits.shape)

    def build_training(self):
        if NumClasses == 2:
            self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False)  # for two-class only
        else:
            self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)  # For multi-class
        # self.loss = tf.keras.losses.MeanAbsoluteError()  # Regression

        # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
        initial_learning_rate = 0.002
        decay_rate = 0.95
        steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
        decay_steps = int(steps_per_epoch) * 4
        print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)

        self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)

        optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)

        if TRACK_MOVING_AVERAGE:
            # Not sure that this works properly (from tfa)
            # optimizer = tfa.optimizers.MovingAverage(optimizer)
            self.ema = tf.train.ExponentialMovingAverage(decay=0.9999)

        self.optimizer = optimizer
        self.initial_learning_rate = initial_learning_rate

    def build_evaluation(self):
        self.train_loss = tf.keras.metrics.Mean(name='train_loss')
        self.test_loss = tf.keras.metrics.Mean(name='test_loss')

        if NumClasses == 2:
            self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
            self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
            self.test_auc = tf.keras.metrics.AUC(name='test_auc')
            self.test_recall = tf.keras.metrics.Recall(name='test_recall')
            self.test_precision = tf.keras.metrics.Precision(name='test_precision')
            self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg')
            self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos')
            self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg')
            self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos')
        else:
            self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
            self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')

    @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
    def train_step(self, inputs, labels):
        labels = tf.squeeze(labels, axis=[3])
        with tf.GradientTape() as tape:
            pred = self.model([inputs], training=True)
            loss = self.loss(labels, pred)
            total_loss = loss
            if len(self.model.losses) > 0:
                reg_loss = tf.math.add_n(self.model.losses)
                total_loss = loss + reg_loss
        gradients = tape.gradient(total_loss, self.model.trainable_variables)
        self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
        if TRACK_MOVING_AVERAGE:
            self.ema.apply(self.model.trainable_variables)

        self.train_loss(loss)
        self.train_accuracy(labels, pred)

        return loss

    @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
    def test_step(self, inputs, labels):
        labels = tf.squeeze(labels, axis=[3])
        pred = self.model([inputs], training=False)
        t_loss = self.loss(labels, pred)

        self.test_loss(t_loss)
        self.test_accuracy(labels, pred)

    # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
    # decorator commented out because pred.numpy(): pred not evaluated yet.
    def predict(self, inputs, labels):
        pred = self.model([inputs], training=False)
        # t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred)
        t_loss = self.loss(labels, pred)

        self.test_labels.append(labels)
        self.test_preds.append(pred.numpy())
        self.test_input.append(inputs)

        self.test_loss(t_loss)
        self.test_accuracy(labels, pred)

    def reset_test_metrics(self):
        self.test_loss.reset_states()
        self.test_accuracy.reset_states()

    def get_metrics(self):
        recall = self.test_recall.result()
        precsn = self.test_precision.result()
        f1 = 2 * (precsn * recall) / (precsn + recall)

        tn = self.test_true_neg.result()
        tp = self.test_true_pos.result()
        fn = self.test_false_neg.result()
        fp = self.test_false_pos.result()

        mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
        return f1, mcc

    def do_training(self, ckpt_dir=None):

        if ckpt_dir is None:
            if not os.path.exists(modeldir):
                os.mkdir(modeldir)
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
        else:
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
            ckpt.restore(ckpt_manager.latest_checkpoint)

        self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
        self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
        self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss'))

        step = 0
        total_time = 0
        best_test_loss = np.finfo(dtype=np.float).max

        if EARLY_STOP:
            es = EarlyStop()

        for epoch in range(NUM_EPOCHS):
            self.train_loss.reset_states()
            self.train_accuracy.reset_states()

            t0 = datetime.datetime.now().timestamp()

            proc_batch_cnt = 0
            n_samples = 0

            for data, label in self.train_dataset:
                trn_ds = tf.data.Dataset.from_tensor_slices((data, label))
                trn_ds = trn_ds.batch(BATCH_SIZE)
                for mini_batch in trn_ds:
                    if self.learningRateSchedule is not None:
                        loss = self.train_step(mini_batch[0], mini_batch[1])

                    if (step % 100) == 0:

                        with self.writer_train.as_default():
                            tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                            tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step)
                            tf.summary.scalar('num_train_steps', step, step=step)
                            tf.summary.scalar('num_epochs', epoch, step=step)

                        self.reset_test_metrics()
                        for data_tst, label_tst in self.test_dataset:
                            tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst))
                            tst_ds = tst_ds.batch(BATCH_SIZE)
                            for mini_batch_test in tst_ds:
                                self.test_step(mini_batch_test[0], mini_batch_test[1])

                        with self.writer_valid.as_default():
                            tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                            tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)

                        with self.writer_train_valid_loss.as_default():
                            tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                            tf.summary.scalar('loss_val', self.test_loss.result(), step=step)

                        print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
                              self.optimizer._decayed_lr('float32').numpy())

                    step += 1
                    print('train loss: ', loss.numpy())

                proc_batch_cnt += 1
                n_samples += data.shape[0]
                print('proc_batch_cnt: ', proc_batch_cnt, n_samples)

            t1 = datetime.datetime.now().timestamp()
            print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
            total_time += (t1-t0)

            self.reset_test_metrics()
            for data, label in self.test_dataset:
                ds = tf.data.Dataset.from_tensor_slices((data, label))
                ds = ds.batch(BATCH_SIZE)
                for mini_batch in ds:
                    self.test_step(mini_batch[0], mini_batch[1])

            print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
            print('------------------------------------------------------')

            tst_loss = self.test_loss.result().numpy()
            if tst_loss < best_test_loss:
                best_test_loss = tst_loss
                ckpt_manager.save()

            if EARLY_STOP and es.check_stop(tst_loss):
                break

        print('total time: ', total_time)
        self.writer_train.close()
        self.writer_valid.close()
        self.writer_train_valid_loss.close()

    def build_model(self):
        self.build_srcnn()
        self.model = tf.keras.Model(self.inputs, self.logits)

    def restore(self, ckpt_dir):

        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
        ckpt.restore(ckpt_manager.latest_checkpoint)

        self.reset_test_metrics()

        for data, label in self.test_dataset:
            ds = tf.data.Dataset.from_tensor_slices((data, label))
            ds = ds.batch(BATCH_SIZE)
            for mini_batch_test in ds:
                self.predict(mini_batch_test[0], mini_batch_test[1])

        print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())

        labels = np.concatenate(self.test_labels)
        preds = np.concatenate(self.test_preds)
        inputs = np.concatenate(self.test_input)
        print(labels.shape, preds.shape)

        return labels, preds, inputs

    def do_evaluate(self, inputs, ckpt_dir):

        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
        ckpt.restore(ckpt_manager.latest_checkpoint)

        self.reset_test_metrics()

        pred = self.model([inputs], training=False)
        self.test_probs = pred
        pred = pred.numpy()

        return pred

    def run(self, directory, ckpt_dir=None, num_data_samples=50000):
        train_data_files = glob.glob(directory+'train*mres*.npy')
        valid_data_files = glob.glob(directory+'valid*mres*.npy')
        train_label_files = glob.glob(directory+'train*ires*.npy')
        valid_label_files = glob.glob(directory+'valid*ires*.npy')
        self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)

        self.build_model()
        self.build_training()
        self.build_evaluation()
        self.do_training(ckpt_dir=ckpt_dir)

    def run_restore(self, directory, ckpt_dir):
        self.num_data_samples = 1000

        valid_data_files = glob.glob(directory + 'valid*mres*.npy')
        valid_label_files = glob.glob(directory + 'valid*ires*.npy')
        self.setup_test_pipeline(valid_data_files, valid_label_files)

        self.build_model()
        self.build_training()
        self.build_evaluation()
        return self.restore(ckpt_dir)

    def run_evaluate(self, data, ckpt_dir):
        # data = tf.convert_to_tensor(data, dtype=tf.float32)
        self.num_data_samples = 80000
        self.build_model()
        self.build_training()
        self.build_evaluation()
        return self.do_evaluate(data, ckpt_dir)


def run_restore_static(directory, ckpt_dir, out_file=None):
    nn = SRCNN()
    labels, preds, inputs = nn.run_restore(directory, ckpt_dir)
    if out_file is not None:
        np.save(out_file,
                [np.squeeze(labels), preds.argmax(axis=3),
                 denormalize(inputs[:, 1:65, 1:65, 0], 'temp_11_0um_nom', mean_std_dct),
                 denormalize(inputs[:, 1:65, 1:65, 1], 'refl_0_65um_nom', mean_std_dct),
                 denormalize(inputs[:, 1:65, 1:65, 2], 'refl_0_65um_nom', mean_std_dct),
                 denormalize(inputs[:, 1:65, 1:65, 3], 'refl_0_65um_nom', mean_std_dct),
                 inputs[:, 1:65, 1:65, 4]])


def run_evaluate_static(in_file, out_file, ckpt_dir):
    gc.collect()

    h5f = h5py.File(in_file, 'r')

    bt = get_grid_values_all(h5f, 'orig/temp_11_0um')
    y_len, x_len = bt.shape[0], bt.shape[1]
    lons = get_grid_values_all(h5f, 'orig/longitude')
    lats = get_grid_values_all(h5f, 'orig/latitude')
    bt = np.where(np.isnan(bt), 0, bt)
    bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct)

    refl = get_grid_values_all(h5f, 'super/refl_0_65um')
    refl = np.where(np.isnan(refl), 0, refl)
    refl = np.expand_dims(refl, axis=0)
    refl_lo, refl_hi, refl_std, refl_avg = get_min_max_std(refl)
    refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct)
    refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct)
    refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct)
    refl_lo = np.squeeze(refl_lo)
    refl_hi = np.squeeze(refl_hi)
    refl_avg = np.squeeze(refl_avg)

    cp = get_grid_values_all(h5f, 'orig/'+label_param)
    cp = np.where(np.isnan(cp), 0, cp)

    data = np.stack([bt, refl_lo, refl_hi, refl_avg, cp], axis=2)
    data = np.expand_dims(data, axis=0)

    h5f.close()

    nn = SRCNN()
    probs = nn.run_evaluate(data, ckpt_dir)
    cld_frac = probs.argmax(axis=3)
    cld_frac = cld_frac.astype(np.int8)
    cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8)
    border = int((KERNEL_SIZE - 1)/2)
    cld_frac_out[border:y_len - border, border:x_len - border] = cld_frac[0, :, :]

    bt = denormalize(bt, 'temp_11_0um_nom', mean_std_dct)
    refl_avg = denormalize(refl_avg, 'refl_0_65um_nom', mean_std_dct)

    var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
    dims = ['num_params', 'y', 'x']

    da = xr.DataArray(np.stack([cld_frac_out, bt, refl_avg], axis=0), dims=dims)
    da.assign_coords({
        'num_params': var_names,
        'lat': (['y', 'x'], lats),
        'lon': (['y', 'x'], lons)
    })

    if out_file is not None:
        np.save(out_file, (cld_frac_out, bt, refl_avg, cp, lons, lats))
    else:
        return [cld_frac_out, bt, refl_avg, cp, lons, lats]


def analyze_3cat(file):

    tup = np.load(file, allow_pickle=True)
    lbls = tup[0]
    pred = tup[1]

    lbls = lbls.flatten()
    pred = pred.flatten()
    print(np.sum(lbls == 0), np.sum(lbls == 1), np.sum(lbls == 2))

    msk_0_1 = lbls != 2
    msk_1_2 = lbls != 0
    msk_0_2 = lbls != 1

    lbls_0_1 = lbls[msk_0_1]

    pred_0_1 = pred[msk_0_1]
    pred_0_1 = np.where(pred_0_1 == 2, 1, pred_0_1)

    # ----
    lbls_1_2 = lbls[msk_1_2]
    lbls_1_2 = np.where(lbls_1_2 == 1, 0, lbls_1_2)
    lbls_1_2 = np.where(lbls_1_2 == 2, 1, lbls_1_2)

    pred_1_2 = pred[msk_1_2]
    pred_1_2 = np.where(pred_1_2 == 0, -9, pred_1_2)
    pred_1_2 = np.where(pred_1_2 == 1, 0, pred_1_2)
    pred_1_2 = np.where(pred_1_2 == 2, 1, pred_1_2)
    pred_1_2 = np.where(pred_1_2 == -9, 1, pred_1_2)

    # ----
    lbls_0_2 = lbls[msk_0_2]
    lbls_0_2 = np.where(lbls_0_2 == 2, 1, lbls_0_2)

    pred_0_2 = pred[msk_0_2]
    pred_0_2 = np.where(pred_0_2 == 2, 1, pred_0_2)

    cm_0_1 = confusion_matrix_values(lbls_0_1, pred_0_1)
    cm_1_2 = confusion_matrix_values(lbls_1_2, pred_1_2)
    cm_0_2 = confusion_matrix_values(lbls_0_2, pred_0_2)

    true_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 0)
    false_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 0)

    true_no_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 1)
    false_no_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 1)

    true_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 0)
    false_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 0)

    true_no_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 1)
    false_no_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 1)

    true_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 0)
    false_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 0)

    true_no_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 1)
    false_no_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 1)

    tp_0 = np.sum(true_0_1).astype(np.float64)
    tp_1 = np.sum(true_1_2).astype(np.float64)
    tp_2 = np.sum(true_0_2).astype(np.float64)

    tn_0 = np.sum(true_no_0_1).astype(np.float64)
    tn_1 = np.sum(true_no_1_2).astype(np.float64)
    tn_2 = np.sum(true_no_0_2).astype(np.float64)

    fp_0 = np.sum(false_0_1).astype(np.float64)
    fp_1 = np.sum(false_1_2).astype(np.float64)
    fp_2 = np.sum(false_0_2).astype(np.float64)

    fn_0 = np.sum(false_no_0_1).astype(np.float64)
    fn_1 = np.sum(false_no_1_2).astype(np.float64)
    fn_2 = np.sum(false_no_0_2).astype(np.float64)

    recall_0 = tp_0 / (tp_0 + fn_0)
    recall_1 = tp_1 / (tp_1 + fn_1)
    recall_2 = tp_2 / (tp_2 + fn_2)

    precision_0 = tp_0 / (tp_0 + fp_0)
    precision_1 = tp_1 / (tp_1 + fp_1)
    precision_2 = tp_2 / (tp_2 + fp_2)

    mcc_0 = ((tp_0 * tn_0) - (fp_0 * fn_0)) / np.sqrt((tp_0 + fp_0) * (tp_0 + fn_0) * (tn_0 + fp_0) * (tn_0 + fn_0))
    mcc_1 = ((tp_1 * tn_1) - (fp_1 * fn_1)) / np.sqrt((tp_1 + fp_1) * (tp_1 + fn_1) * (tn_1 + fp_1) * (tn_1 + fn_1))
    mcc_2 = ((tp_2 * tn_2) - (fp_2 * fn_2)) / np.sqrt((tp_2 + fp_2) * (tp_2 + fn_2) * (tn_2 + fp_2) * (tn_2 + fn_2))

    acc_0 = np.sum(lbls_0_1 == pred_0_1)/pred_0_1.size
    acc_1 = np.sum(lbls_1_2 == pred_1_2)/pred_1_2.size
    acc_2 = np.sum(lbls_0_2 == pred_0_2)/pred_0_2.size

    print(acc_0, recall_0, precision_0, mcc_0)
    print(acc_1, recall_1, precision_1, mcc_1)
    print(acc_2, recall_2, precision_2, mcc_2)

    return cm_0_1, cm_1_2, cm_0_2, [acc_0, acc_1, acc_2], [recall_0, recall_1, recall_2],\
        [precision_0, precision_1, precision_2], [mcc_0, mcc_1, mcc_2]


def analyze_5cat(file):

    tup = np.load(file, allow_pickle=True)
    lbls = tup[0]
    pred = tup[1]

    lbls = lbls.flatten()
    pred = pred.flatten()
    np.histogram(lbls, bins=5)
    np.histogram(pred, bins=5)

    new_lbls = np.zeros(lbls.size, dtype=np.int32)
    new_pred = np.zeros(pred.size, dtype=np.int32)

    new_lbls[lbls == 0] = 0
    new_lbls[lbls == 1] = 1
    new_lbls[lbls == 2] = 1
    new_lbls[lbls == 3] = 1
    new_lbls[lbls == 4] = 2

    new_pred[pred == 0] = 0
    new_pred[pred == 1] = 1
    new_pred[pred == 2] = 1
    new_pred[pred == 3] = 1
    new_pred[pred == 4] = 2

    np.histogram(new_lbls, bins=3)
    np.histogram(new_pred, bins=3)

    lbls = new_lbls
    pred = new_pred

    print(np.sum(lbls == 0), np.sum(lbls == 1), np.sum(lbls == 2))

    msk_0_1 = lbls != 2
    msk_1_2 = lbls != 0
    msk_0_2 = lbls != 1

    lbls_0_1 = lbls[msk_0_1]

    pred_0_1 = pred[msk_0_1]
    pred_0_1 = np.where(pred_0_1 == 2, 1, pred_0_1)

    # ----------------------------------------------
    lbls_1_2 = lbls[msk_1_2]
    lbls_1_2 = np.where(lbls_1_2 == 1, 0, lbls_1_2)
    lbls_1_2 = np.where(lbls_1_2 == 2, 1, lbls_1_2)

    pred_1_2 = pred[msk_1_2]
    pred_1_2 = np.where(pred_1_2 == 0, -9, pred_1_2)
    pred_1_2 = np.where(pred_1_2 == 1, 0, pred_1_2)
    pred_1_2 = np.where(pred_1_2 == 2, 1, pred_1_2)
    pred_1_2 = np.where(pred_1_2 == -9, 1, pred_1_2)

    # -----------------------------------------------
    lbls_0_2 = lbls[msk_0_2]
    lbls_0_2 = np.where(lbls_0_2 == 2, 1, lbls_0_2)

    pred_0_2 = pred[msk_0_2]
    pred_0_2 = np.where(pred_0_2 == 2, 1, pred_0_2)

    cm_0_1 = confusion_matrix_values(lbls_0_1, pred_0_1)
    cm_1_2 = confusion_matrix_values(lbls_1_2, pred_1_2)
    cm_0_2 = confusion_matrix_values(lbls_0_2, pred_0_2)

    true_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 0)
    false_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 0)

    true_no_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 1)
    false_no_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 1)

    true_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 0)
    false_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 0)

    true_no_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 1)
    false_no_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 1)

    true_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 0)
    false_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 0)

    true_no_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 1)
    false_no_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 1)

    tp_0 = np.sum(true_0_1).astype(np.float64)
    tp_1 = np.sum(true_1_2).astype(np.float64)
    tp_2 = np.sum(true_0_2).astype(np.float64)

    tn_0 = np.sum(true_no_0_1).astype(np.float64)
    tn_1 = np.sum(true_no_1_2).astype(np.float64)
    tn_2 = np.sum(true_no_0_2).astype(np.float64)

    fp_0 = np.sum(false_0_1).astype(np.float64)
    fp_1 = np.sum(false_1_2).astype(np.float64)
    fp_2 = np.sum(false_0_2).astype(np.float64)

    fn_0 = np.sum(false_no_0_1).astype(np.float64)
    fn_1 = np.sum(false_no_1_2).astype(np.float64)
    fn_2 = np.sum(false_no_0_2).astype(np.float64)

    recall_0 = tp_0 / (tp_0 + fn_0)
    recall_1 = tp_1 / (tp_1 + fn_1)
    recall_2 = tp_2 / (tp_2 + fn_2)

    precision_0 = tp_0 / (tp_0 + fp_0)
    precision_1 = tp_1 / (tp_1 + fp_1)
    precision_2 = tp_2 / (tp_2 + fp_2)

    mcc_0 = ((tp_0 * tn_0) - (fp_0 * fn_0)) / np.sqrt((tp_0 + fp_0) * (tp_0 + fn_0) * (tn_0 + fp_0) * (tn_0 + fn_0))
    mcc_1 = ((tp_1 * tn_1) - (fp_1 * fn_1)) / np.sqrt((tp_1 + fp_1) * (tp_1 + fn_1) * (tn_1 + fp_1) * (tn_1 + fn_1))
    mcc_2 = ((tp_2 * tn_2) - (fp_2 * fn_2)) / np.sqrt((tp_2 + fp_2) * (tp_2 + fn_2) * (tn_2 + fp_2) * (tn_2 + fn_2))

    acc_0 = np.sum(lbls_0_1 == pred_0_1)/pred_0_1.size
    acc_1 = np.sum(lbls_1_2 == pred_1_2)/pred_1_2.size
    acc_2 = np.sum(lbls_0_2 == pred_0_2)/pred_0_2.size

    print(acc_0, recall_0, precision_0, mcc_0)
    print(acc_1, recall_1, precision_1, mcc_1)
    print(acc_2, recall_2, precision_2, mcc_2)

    return cm_0_1, cm_1_2, cm_0_2, [acc_0, acc_1, acc_2], [recall_0, recall_1, recall_2],\
        [precision_0, precision_1, precision_2], [mcc_0, mcc_1, mcc_2], lbls, pred

# from util.plot_cm import *
# from sklearn.metrics import confusion_matrix
# import numpy as np
# tup = np.load('/Users/tomrink/cld_frac_viirs.npy', allow_pickle=True)
# lbls = tup[0]
# pred = tup[1]
# bt = tup[2]
# refl_lo = tup[3]
# refl_hi = tup[4]
# refl_avg = tup[5]
# cld_prob = tup[6]
# from util.plot import plot_image
# cm = confusion_matrix(lbls.flatten(), pred.flatten())
# plot_confusion_matrix(cm, ['CLR', '0.13', '0.31', '0.50', '0.69', '0.88', 'CLD'], normalize=True, axis=0)
# # plot_confusion_matrix(cm, ['CLR', '1/4', '1/2', '3/4', 'CLD'], normalize=True, axis=0)

# lbls = lbls.flatten()
# pred = pred.flatten()
# cld_prob = cld_prob.flatten()
# cat_0 = lbls == 0
# cat_1 = lbls == 1
# cat_2 = lbls == 2
# cat_3 = lbls == 3
# cat_4 = lbls == 4
# cat_5 = lbls == 5
# cat_6 = lbls == 6
# plt.hist(cld_prob[cat_0], log=True, histtype='step')
# plt.hist(cld_prob[cat_1], log=True, histtype='step')
# plt.hist(cld_prob[cat_2], log=True, histtype='step')
# plt.hist(cld_prob[cat_3], log=True, histtype='step')
# plt.hist(cld_prob[cat_4], log=True, histtype='step')
# plt.hist(cld_prob[cat_5], log=True, histtype='step')
# plt.hist(cld_prob[cat_6], log=True, histtype='step')

# from deeplearning.cloud_fraction_fcn_viirs import run_evaluate_static
# run_evaluate_static('/Users/tomrink/clavrx_VNP02IMG.A2019306.1912.001.2019307003236.uwssec.nc',
# '/Users/tomrink/cld_frac_A2019306.1912', '/Users/tomrink/tf_model_cld_frac_viirs/run-20230421193944/')
# import numpy as np
# tup = np.load('/Users/tomrink/cld_frac_A2019306.1912.npy', allow_pickle=True)
# cfrac = tup[0]
# bt = tup[1]
# refl = tup[2]
# cp = tup[3]
# from util.plot import plot_image

# from deeplearning.cloud_fraction_fcn_viirs import analyze_5cat
# cm_0_1, cm_1_2, cm_0_2, acc, recall, prec, mcc, lbls, pred = analyze_5cat('/Users/tomrink/cld_frac_viirs.npy')
# from util.bar_plot import do_plot
# do_plot(['ACC', 'RECALL', 'PREC', 'MCC'], [[acc[0], recall[0], prec[0], mcc[0]],
#                                            [acc[1], recall[1], prec[1], mcc[1]],
#                                            [acc[2], recall[2], prec[2], mcc[2]]],
#         ['CLR v MIX', 'MIX v CLD', 'CLR v CLD'], ['green', 'blue', 'black'],
#         title='CLD FRAC', xlabel='Metric', barWidth=0.15, ylim=[0.4, 1.0])


if __name__ == "__main__":
    nn = SRCNN()
    nn.run('matchup_filename')