import tensorflow as tf from util.setup import logdir, modeldir, cachepath, now, ancillary_path from util.util import EarlyStop, normalize, make_for_full_domain_predict from util.geos_nav import get_navigation, get_lon_lat_2d_mesh import os, datetime import numpy as np import pickle import h5py USE_FLIGHT_ALTITUDE = True LOG_DEVICE_PLACEMENT = False # Manual (data, label) caching, but has been replaced with tf.data.dataset.cache() CACHE_DATA_IN_MEM = False PROC_BATCH_SIZE = 4096 PROC_BATCH_BUFFER_SIZE = 50000 NumClasses = 2 if NumClasses == 2: NumLogits = 1 else: NumLogits = NumClasses BATCH_SIZE = 128 NUM_EPOCHS = 100 TRACK_MOVING_AVERAGE = False EARLY_STOP = False TRIPLET = False CONV3D = False NOISE_TRAINING = False NOISE_STDDEV = 0.01 img_width = 16 mean_std_dct = {} mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl' f = open(mean_std_file, 'rb') mean_std_dct_l2 = pickle.load(f) f.close() mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl' f = open(mean_std_file, 'rb') mean_std_dct_l1b = pickle.load(f) f.close() mean_std_dct.update(mean_std_dct_l1b) mean_std_dct.update(mean_std_dct_l2) # -- NIGHT L2 ----------------------------- train_params_l2_night = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction', 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_acha', 'cld_opd_acha'] # -- DAY L2 -------------------------------- train_params_l2_day = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction', 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] # -- DAY L1B -------------------------------- train_params_l1b_day = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] # -- NIGHT L1B ------------------------------- train_params_l1b_night = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom'] # -- DAY LUNAR --------------------------------- # train_params_l1b = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction', # 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] # --------------------------------------------- train_params = train_params_l1b_day + train_params_l2_day # -- Zero out params (Experimentation Only) ------------ zero_out_params = ['cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] DO_ZERO_OUT = False def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True): with tf.name_scope(block_name): if doDropout: fc = tf.keras.layers.Dropout(drop_rate)(input) fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) else: fc = tf.keras.layers.Dense(num_neurons, activation=activation)(input) if doBatchNorm: fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) fc_skip = fc if doDropout: fc = tf.keras.layers.Dropout(drop_rate)(fc) fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) if doBatchNorm: fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) if doDropout: fc = tf.keras.layers.Dropout(drop_rate)(fc) fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) if doBatchNorm: fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) if doDropout: fc = tf.keras.layers.Dropout(drop_rate)(fc) fc = tf.keras.layers.Dense(num_neurons, activation=None)(fc) if doBatchNorm: fc = tf.keras.layers.BatchNormalization()(fc) fc = fc + fc_skip fc = tf.keras.layers.LeakyReLU()(fc) print(fc.shape) return fc class IcingIntensityNN: def __init__(self, day_night='DAY', gpu_device=0, datapath=None): if day_night == 'DAY': self.train_params_l1b = train_params_l1b_day self.train_params_l2 = train_params_l2_day self.train_params = train_params_l1b_day + train_params_l2_day else: self.train_params_l1b = train_params_l1b_night self.train_params_l2 = train_params_l2_night self.train_params = train_params_l1b_night + train_params_l2_night self.train_data = None self.train_label = None self.test_data = None self.test_label = None self.test_data_denorm = None self.train_dataset = None self.inner_train_dataset = None self.test_dataset = None self.eval_dataset = None self.X_img = None self.X_prof = None self.X_u = None self.X_v = None self.X_sfc = None self.inputs = [] self.y = None self.handle = None self.inner_handle = None self.in_mem_batch = None self.h5f_l1b_trn = None self.h5f_l1b_tst = None self.h5f_l2_trn = None self.h5f_l2_tst = None self.logits = None self.predict_data = None self.predict_dataset = None self.mean_list = None self.std_list = None self.training_op = None self.correct = None self.accuracy = None self.loss = None self.pred_class = None self.gpu_device = gpu_device self.variable_averages = None self.global_step = None self.writer_train = None self.writer_valid = None self.OUT_OF_RANGE = False self.abi = None self.temp = None self.wv = None self.lbfp = None self.sfc = None self.in_mem_data_cache = {} self.in_mem_data_cache_test = {} self.model = None self.optimizer = None self.ema = None self.train_loss = None self.train_accuracy = None self.test_loss = None self.test_accuracy = None self.test_auc = None self.test_recall = None self.test_precision = None self.test_confusion_matrix = None self.test_true_pos = None self.test_true_neg = None self.test_false_pos = None self.test_false_neg = None self.test_labels = [] self.test_preds = [] self.test_probs = None self.learningRateSchedule = None self.num_data_samples = None self.initial_learning_rate = None self.data_dct = None n_chans = len(self.train_params) if TRIPLET: n_chans *= 3 self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans)) self.inputs.append(self.X_img) self.inputs.append(tf.keras.Input(5)) self.flight_level = 0 self.DISK_CACHE = False if datapath is not None: self.DISK_CACHE = False f = open(datapath, 'rb') self.in_mem_data_cache = pickle.load(f) f.close() tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) # Doesn't seem to play well with SLURM # gpus = tf.config.experimental.list_physical_devices('GPU') # if gpus: # try: # # Currently, memory growth needs to be the same across GPUs # for gpu in gpus: # tf.config.experimental.set_memory_growth(gpu, True) # logical_gpus = tf.config.experimental.list_logical_devices('GPU') # print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") # except RuntimeError as e: # # Memory growth must be set before GPUs have been initialized # print(e) def get_in_mem_data_batch(self, idxs, is_training): # Pretty much dead, but left in here for reference (See note above) if CACHE_DATA_IN_MEM: key = frozenset(idxs) if is_training: tup = self.in_mem_data_cache.get(key) else: tup = self.in_mem_data_cache_test(key) if tup is not None: return tup[0], tup[1], tup[2] # sort these to use as numpy indexing arrays nd_idxs = np.array(idxs) nd_idxs = np.sort(nd_idxs) data = [] for param in self.train_params: nda = self.get_parameter_data(param, nd_idxs, is_training) # Manual Corruption Process. Better: see use of tf.keras.layers.GaussianNoise # if NOISE_TRAINING and is_training: # nda = normalize(nda, param, mean_std_dct, add_noise=True, noise_scale=0.01, seed=42) # else: # nda = normalize(nda, param, mean_std_dct) nda = normalize(nda, param, mean_std_dct) if DO_ZERO_OUT and is_training: try: zero_out_params.index(param) nda[:,] = 0.0 except ValueError: pass data.append(nda) data = np.stack(data) data = data.astype(np.float32) data = np.transpose(data, axes=(1, 2, 3, 0)) data_alt = self.get_scalar_data(nd_idxs, is_training) label = self.get_label_data(nd_idxs, is_training) label = np.where(label == -1, 0, label) # binary, two class if NumClasses == 2: label = np.where(label != 0, 1, label) label = label.reshape((label.shape[0], 1)) elif NumClasses == 3: label = np.where(np.logical_or(label == 1, label == 2), 1, label) label = np.where(np.invert(np.logical_or(label == 0, label == 1)), 2, label) label = label.reshape((label.shape[0], 1)) if CACHE_DATA_IN_MEM: if is_training: self.in_mem_data_cache[key] = (data, data_alt, label) else: self.in_mem_data_cache_test[key] = (data, data_alt, label) return data, data_alt, label def get_parameter_data(self, param, nd_idxs, is_training): if is_training: if param in self.train_params_l1b: h5f = self.h5f_l1b_trn else: h5f = self.h5f_l2_trn else: if param in self.train_params_l1b: h5f = self.h5f_l1b_tst else: h5f = self.h5f_l2_tst nda = h5f[param][nd_idxs,] return nda def get_scalar_data(self, nd_idxs, is_training): param = 'flight_altitude' if is_training: if self.h5f_l1b_trn is not None: h5f = self.h5f_l1b_trn else: h5f = self.h5f_l2_trn else: if self.h5f_l1b_tst is not None: h5f = self.h5f_l1b_tst else: h5f = self.h5f_l2_tst nda = h5f[param][nd_idxs,] nda[np.logical_and(nda >= 0, nda < 2000)] = 0 nda[np.logical_and(nda >= 2000, nda < 4000)] = 1 nda[np.logical_and(nda >= 4000, nda < 6000)] = 2 nda[np.logical_and(nda >= 6000, nda < 8000)] = 3 nda[np.logical_and(nda >= 8000, nda < 15000)] = 4 nda = tf.one_hot(nda, 5).numpy() return nda def get_label_data(self, nd_idxs, is_training): # Note: labels will be same for nd_idxs across both L1B and L2 if is_training: if self.h5f_l1b_trn is not None: h5f = self.h5f_l1b_trn else: h5f = self.h5f_l2_trn else: if self.h5f_l1b_tst is not None: h5f = self.h5f_l1b_tst else: h5f = self.h5f_l2_tst label = h5f['icing_intensity'][nd_idxs] label = label.astype(np.int32) return label def get_in_mem_data_batch_train(self, idxs): return self.get_in_mem_data_batch(idxs, True) def get_in_mem_data_batch_test(self, idxs): return self.get_in_mem_data_batch(idxs, False) def get_in_mem_data_batch_eval(self, idxs): # sort these to use as numpy indexing arrays nd_idxs = np.array(idxs) nd_idxs = np.sort(nd_idxs) data = [] for param in self.train_params: nda = self.data_dct[param][nd_idxs, ] nda = normalize(nda, param, mean_std_dct) data.append(nda) data = np.stack(data) data = data.astype(np.float32) data = np.transpose(data, axes=(1, 2, 3, 0)) # TODO: altitude data will be specified by user at run-time nda = np.zeros([nd_idxs.size]) nda[:] = self.flight_level nda = tf.one_hot(nda, 5).numpy() return data, nda @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32, tf.int32]) return out @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function_test(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32, tf.int32]) return out @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function_evaluate(self, indexes): # TODO: modify for user specified altitude out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], [tf.float32, tf.float32]) return out def get_train_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) dataset = dataset.cache() # dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset def get_test_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function_test, num_parallel_calls=8) dataset = dataset.cache() self.test_dataset = dataset def get_evaluate_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8) dataset = dataset.cache() self.eval_dataset = dataset def setup_pipeline(self, filename_l1b_trn, filename_l1b_tst, filename_l2_trn, filename_l2_tst, trn_idxs=None, tst_idxs=None, seed=None): if filename_l1b_trn is not None: self.h5f_l1b_trn = h5py.File(filename_l1b_trn, 'r') if filename_l1b_tst is not None: self.h5f_l1b_tst = h5py.File(filename_l1b_tst, 'r') if filename_l2_trn is not None: self.h5f_l2_trn = h5py.File(filename_l2_trn, 'r') if filename_l2_tst is not None: self.h5f_l2_tst = h5py.File(filename_l2_tst, 'r') if trn_idxs is None: # Note: time is same across both L1B and L2 for idxs if self.h5f_l1b_trn is not None: h5f = self.h5f_l1b_trn else: h5f = self.h5f_l2_trn time = h5f['time'] trn_idxs = np.arange(time.shape[0]) if seed is not None: np.random.seed(seed) np.random.shuffle(trn_idxs) if self.h5f_l1b_tst is not None: h5f = self.h5f_l1b_tst else: h5f = self.h5f_l2_tst time = h5f['time'] tst_idxs = np.arange(time.shape[0]) if seed is not None: np.random.seed(seed) np.random.shuffle(tst_idxs) self.num_data_samples = trn_idxs.shape[0] self.get_train_dataset(trn_idxs) self.get_test_dataset(tst_idxs) print('datetime: ', now) print('num train samples: ', self.num_data_samples) print('BATCH SIZE: ', BATCH_SIZE) print('num test samples: ', tst_idxs.shape[0]) print('setup_pipeline: Done') def setup_test_pipeline(self, filename_l1b, filename_l2, seed=None, shuffle=False): if filename_l1b is not None: self.h5f_l1b_tst = h5py.File(filename_l1b, 'r') if filename_l2 is not None: self.h5f_l2_tst = h5py.File(filename_l2, 'r') if self.h5f_l1b_tst is not None: h5f = self.h5f_l1b_tst else: h5f = self.h5f_l2_tst time = h5f['time'] tst_idxs = np.arange(time.shape[0]) self.num_data_samples = len(tst_idxs) if seed is not None: np.random.seed(seed) if shuffle: np.random.shuffle(tst_idxs) self.get_test_dataset(tst_idxs) print('num test samples: ', tst_idxs.shape[0]) print('setup_test_pipeline: Done') def setup_eval_pipeline(self, data_dct, num_tiles): self.data_dct = data_dct idxs = np.arange(num_tiles) self.num_data_samples = idxs.shape[0] self.get_evaluate_dataset(idxs) def build_1d_cnn(self): print('build_1d_cnn') # padding = 'VALID' padding = 'SAME' # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.leaky_relu num_filters = 6 conv = tf.keras.layers.Conv1D(num_filters, 5, strides=1, padding=padding)(self.inputs[1]) conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) print(conv) num_filters *= 2 conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) print(conv) num_filters *= 2 conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) print(conv) num_filters *= 2 conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) print(conv) flat = tf.keras.layers.Flatten()(conv) print(flat) return flat def build_cnn(self): print('build_cnn') # padding = "VALID" padding = "SAME" # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.leaky_relu momentum = 0.99 num_filters = len(self.train_params) * 2 if NOISE_TRAINING: input_2d = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(self.inputs[0]) else: input_2d = self.inputs[0] conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(input_2d) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) num_filters *= 2 conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) num_filters *= 2 conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) num_filters *= 2 conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) # num_filters *= 2 # conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) # conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) # conv = tf.keras.layers.BatchNormalization()(conv) # print(conv.shape) flat = tf.keras.layers.Flatten()(conv) return flat def build_dnn(self, input_layer=None): print('build fully connected layer') drop_rate = 0.5 # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.leaky_relu momentum = 0.99 if input_layer is not None: flat = input_layer n_hidden = input_layer.shape[1] else: flat = self.X_img n_hidden = self.X_img.shape[1] fac = 2 fc = build_residual_block(flat, drop_rate, fac*n_hidden, activation, 'Residual_Block_1', doDropout=True, doBatchNorm=True) fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2', doDropout=True, doBatchNorm=True) fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3', doDropout=True, doBatchNorm=True) fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4', doDropout=True, doBatchNorm=True) fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5', doDropout=True, doBatchNorm=True) # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_6', doDropout=True, doBatchNorm=True) # # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_7', doDropout=True, doBatchNorm=True) # # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_8', doDropout=True, doBatchNorm=True) fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc) fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) if NumClasses == 2: activation = tf.nn.sigmoid # For binary else: activation = tf.nn.softmax # For multi-class # Called logits, but these are actually probabilities, see activation logits = tf.keras.layers.Dense(NumLogits, activation=activation)(fc) print(logits.shape) self.logits = logits def build_training(self): if NumClasses == 2: self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only else: self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) initial_learning_rate = 0.006 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch decay_steps = int(steps_per_epoch / 2) print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) if TRACK_MOVING_AVERAGE: # Not really sure this works properly (from tfa) # optimizer = tfa.optimizers.MovingAverage(optimizer) self.ema = tf.train.ExponentialMovingAverage(decay=0.9999) self.optimizer = optimizer self.initial_learning_rate = initial_learning_rate def build_evaluation(self): self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss') if NumClasses == 2: self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy') self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy') self.test_auc = tf.keras.metrics.AUC(name='test_auc') self.test_recall = tf.keras.metrics.Recall(name='test_recall') self.test_precision = tf.keras.metrics.Precision(name='test_precision') self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg') self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos') self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg') self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos') else: self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') @tf.function def train_step(self, mini_batch): inputs = [mini_batch[0], mini_batch[1]] labels = mini_batch[2] with tf.GradientTape() as tape: pred = self.model(inputs, training=True) loss = self.loss(labels, pred) total_loss = loss if len(self.model.losses) > 0: reg_loss = tf.math.add_n(self.model.losses) total_loss = loss + reg_loss gradients = tape.gradient(total_loss, self.model.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) if TRACK_MOVING_AVERAGE: self.ema.apply(self.model.trainable_variables) self.train_loss(loss) self.train_accuracy(labels, pred) return loss @tf.function def test_step(self, mini_batch): inputs = [mini_batch[0], mini_batch[1]] labels = mini_batch[2] pred = self.model(inputs, training=False) t_loss = self.loss(labels, pred) self.test_loss(t_loss) self.test_accuracy(labels, pred) if NumClasses == 2: self.test_auc(labels, pred) self.test_recall(labels, pred) self.test_precision(labels, pred) self.test_true_neg(labels, pred) self.test_true_pos(labels, pred) self.test_false_neg(labels, pred) self.test_false_pos(labels, pred) def predict(self, mini_batch): inputs = [mini_batch[0], mini_batch[1]] labels = mini_batch[2] pred = self.model(inputs, training=False) t_loss = self.loss(labels, pred) self.test_labels.append(labels) self.test_preds.append(pred.numpy()) self.test_loss(t_loss) self.test_accuracy(labels, pred) if NumClasses == 2: self.test_auc(labels, pred) self.test_recall(labels, pred) self.test_precision(labels, pred) self.test_true_neg(labels, pred) self.test_true_pos(labels, pred) self.test_false_neg(labels, pred) self.test_false_pos(labels, pred) def reset_test_metrics(self): self.test_loss.reset_states() self.test_accuracy.reset_states() if NumClasses == 2: self.test_auc.reset_states() self.test_recall.reset_states() self.test_precision.reset_states() self.test_true_neg.reset_states() self.test_true_pos.reset_states() self.test_false_neg.reset_states() self.test_false_pos.reset_states() def get_metrics(self): recall = self.test_recall.result() precsn = self.test_precision.result() f1 = 2 * (precsn * recall) / (precsn + recall) tn = self.test_true_neg.result() tp = self.test_true_pos.result() fn = self.test_false_neg.result() fp = self.test_false_pos.result() mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) return f1, mcc def do_training(self, ckpt_dir=None): if ckpt_dir is None: if not os.path.exists(modeldir): os.mkdir(modeldir) ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) else: ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) step = 0 total_time = 0 best_test_loss = np.finfo(dtype=np.float).max best_test_acc = 0 best_test_recall = 0 best_test_precision = 0 best_test_auc = 0 best_test_f1 = 0 best_test_mcc = 0 if EARLY_STOP: es = EarlyStop() for epoch in range(NUM_EPOCHS): self.train_loss.reset_states() self.train_accuracy.reset_states() t0 = datetime.datetime.now().timestamp() proc_batch_cnt = 0 n_samples = 0 for data0, data1, label in self.train_dataset: trn_ds = tf.data.Dataset.from_tensor_slices((data0, data1, label)) trn_ds = trn_ds.batch(BATCH_SIZE) for mini_batch in trn_ds: if self.learningRateSchedule is not None: loss = self.train_step(mini_batch) if (step % 100) == 0: with self.writer_train.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step) tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_epochs', epoch, step=step) self.reset_test_metrics() for data0_tst, data1_tst, label_tst in self.test_dataset: tst_ds = tf.data.Dataset.from_tensor_slices((data0_tst, data1_tst, label_tst)) tst_ds = tst_ds.batch(BATCH_SIZE) for mini_batch_test in tst_ds: self.test_step(mini_batch_test) if NumClasses == 2: f1, mcc = self.get_metrics() with self.writer_valid.as_default(): tf.summary.scalar('loss_val', self.test_loss.result(), step=step) tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) if NumClasses == 2: tf.summary.scalar('auc_val', self.test_auc.result(), step=step) tf.summary.scalar('recall_val', self.test_recall.result(), step=step) tf.summary.scalar('prec_val', self.test_precision.result(), step=step) tf.summary.scalar('f1_val', f1, step=step) tf.summary.scalar('mcc_val', mcc, step=step) tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_epochs', epoch, step=step) print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.optimizer._decayed_lr('float32').numpy()) step += 1 print('train loss: ', loss.numpy()) proc_batch_cnt += 1 n_samples += data0.shape[0] print('proc_batch_cnt: ', proc_batch_cnt, n_samples) t1 = datetime.datetime.now().timestamp() print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) total_time += (t1-t0) self.reset_test_metrics() for data0, data1, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data0, data1, label)) ds = ds.batch(BATCH_SIZE) for mini_batch in ds: self.test_step(mini_batch) if NumClasses == 2: f1, mcc = self.get_metrics() print('loss, acc, recall, precision, auc, f1, mcc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy()) else: print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) print('------------------------------------------------------') tst_loss = self.test_loss.result().numpy() if tst_loss < best_test_loss: best_test_loss = tst_loss best_test_acc = self.test_accuracy.result().numpy() best_test_recall = self.test_recall.result().numpy() best_test_precision = self.test_precision.result().numpy() best_test_auc = self.test_auc.result().numpy() best_test_f1 = f1.numpy() best_test_mcc = mcc.numpy() ckpt_manager.save() if self.DISK_CACHE and epoch == 0: f = open(cachepath, 'wb') pickle.dump(self.in_mem_data_cache, f) f.close() if EARLY_STOP and es.check_stop(tst_loss): break print('total time: ', total_time) self.writer_train.close() self.writer_valid.close() if self.h5f_l1b_trn is not None: self.h5f_l1b_trn.close() if self.h5f_l1b_tst is not None: self.h5f_l1b_tst.close() if self.h5f_l2_trn is not None: self.h5f_l2_trn.close() if self.h5f_l2_tst is not None: self.h5f_l2_tst.close() f = open('/home/rink/best_stats_'+now+'.pkl', 'wb') pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f) f.close() def build_model(self): flat = self.build_cnn() # flat_1d = self.build_1d_cnn() # flat = tf.keras.layers.concatenate([flat, flat_1d, flat_anc]) # flat = tf.keras.layers.concatenate([flat, flat_1d]) # self.build_dnn(flat) if USE_FLIGHT_ALTITUDE: flat = tf.keras.layers.concatenate([flat, self.inputs[1]]) self.build_dnn(flat) self.model = tf.keras.Model(self.inputs, self.logits) def restore(self, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.reset_test_metrics() for data0, data1, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data0, data1, label)) ds = ds.batch(BATCH_SIZE) for mini_batch_test in ds: self.predict(mini_batch_test) f1, mcc = self.get_metrics() print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy()) labels = np.concatenate(self.test_labels) self.test_labels = labels preds = np.concatenate(self.test_preds) self.test_probs = preds if NumClasses == 2: preds = np.where(preds > 0.5, 1, 0) else: preds = np.argmax(preds, axis=1) self.test_preds = preds def do_evaluate(self, ckpt_dir=None, prob_thresh=0.5): if ckpt_dir is not None: # if is None, this has been done already ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.reset_test_metrics() pred_s = [] for data in self.eval_dataset: ds = tf.data.Dataset.from_tensor_slices(data) ds = ds.batch(BATCH_SIZE) for mini_batch in ds: pred = self.model([mini_batch], training=False) pred_s.append(pred) preds = np.concatenate(pred_s) preds = preds[:,0] self.test_probs = preds if NumClasses == 2: preds = np.where(preds > prob_thresh, 1, 0) else: preds = np.argmax(preds, axis=1) self.test_preds = preds def run(self, filename_l1b_trn, filename_l1b_tst, filename_l2_trn, filename_l2_tst): # This doesn't really play well with SLURM # with tf.device('/device:GPU:'+str(self.gpu_device)): self.setup_pipeline(filename_l1b_trn, filename_l1b_tst, filename_l2_trn, filename_l2_tst) self.build_model() self.build_training() self.build_evaluation() self.do_training() def run_restore(self, filename_l1b, filename_l2, ckpt_dir): self.setup_test_pipeline(filename_l1b, filename_l2) self.build_model() self.build_training() self.build_evaluation() self.restore(ckpt_dir) if self.h5f_l1b_tst is not None: self.h5f_l1b_tst.close() if self.h5f_l2_tst is not None: self.h5f_l2_tst.close() def run_evaluate(self, filename, ckpt_dir): data_dct, ll, cc = make_for_full_domain_predict(filename, name_list=self.train_params) self.setup_eval_pipeline(data_dct, len(ll)) self.build_model() self.build_training() self.build_evaluation() self.do_evaluate(ckpt_dir) def run_restore_static(filename_l1b, filename_l2, ckpt_dir_s_path, day_night='DAY'): ckpt_dir_s = os.listdir(ckpt_dir_s_path) cm_s = [] prob_s = [] labels = None for ckpt in ckpt_dir_s: ckpt_dir = ckpt_dir_s_path + ckpt if not os.path.isdir(ckpt_dir): continue nn = IcingIntensityNN(day_night=day_night) nn.run_restore(filename_l1b, filename_l2, ckpt_dir) cm_s.append(tf.math.confusion_matrix(nn.test_labels.flatten(), nn.test_preds.flatten())) prob_s.append(nn.test_probs.flatten()) if labels is None: # These should be the same labels = nn.test_labels.flatten() num = len(cm_s) cm_avg = cm_s[0] prob_avg = prob_s[0] for k in range(num-1): cm_avg += cm_s[k+1] prob_avg += prob_s[k+1] cm_avg /= num prob_avg /= num return labels, prob_avg, cm_avg def run_evaluate_static(data_dct, ll, cc, ckpt_dir_s_path, flight_level=4, prob_thresh=0.5, satellite='GOES16', domain='FD'): num_elems = len(cc) num_lines = len(ll) ckpt_dir_s = os.listdir(ckpt_dir_s_path) nav = get_navigation(satellite, domain) prob_s = [] for ckpt in ckpt_dir_s: ckpt_dir = ckpt_dir_s_path + ckpt if not os.path.isdir(ckpt_dir): continue nn = IcingIntensityNN() nn.flight_level = flight_level nn.setup_eval_pipeline(data_dct, num_lines * num_elems) nn.build_model() nn.build_training() nn.build_evaluation() nn.do_evaluate(ckpt_dir) prob_s.append(nn.test_probs) num = len(prob_s) prob_avg = prob_s[0] for k in range(num-1): prob_avg += prob_s[k+1] prob_avg /= num probs = prob_avg if NumClasses == 2: preds = np.where(probs > prob_thresh, 1, 0) else: preds = np.argmax(probs, axis=1) preds_2d = preds.reshape((num_lines, num_elems)) ice_mask = preds == 1 ice_cc = cc[ice_mask] ice_ll = ll[ice_mask] ice_lons, ice_lats = nav.lc_to_earth(ice_cc, ice_ll) return ice_lons, ice_lats, preds_2d def run_evaluate_static_new(data_dct, num_lines, num_elems, ckpt_dir_s_path, day_night='DAY', flight_levels=[0, 1, 2, 3, 4], prob_thresh=0.5): ckpt_dir_s = os.listdir(ckpt_dir_s_path) ckpt_dir = ckpt_dir_s[0] probs_2d_dct = {flvl: None for flvl in flight_levels} preds_2d_dct = {flvl: None for flvl in flight_levels} for flvl in flight_levels: nn = IcingIntensityNN(day_night=day_night) nn.flight_level = flvl nn.setup_eval_pipeline(data_dct, num_lines * num_elems) nn.build_model() nn.build_training() nn.build_evaluation() ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=nn.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) nn.do_evaluate() probs = nn.test_probs if NumClasses == 2: preds = np.where(probs > prob_thresh, 1, 0) else: preds = np.argmax(probs, axis=1) preds_2d = preds.reshape((num_lines, num_elems)) probs_2d = probs.reshape((num_lines, num_elems)) probs_2d_dct[flvl] = probs_2d preds_2d_dct[flvl] = preds_2d return preds_2d_dct, probs_2d_dct if __name__ == "__main__": nn = IcingIntensityNN() nn.run('matchup_filename')