import numpy as np import datetime from datetime import timezone from metpy.units import units from metpy.calc import thickness_hydrostatic from collections import namedtuple import os LatLonTuple = namedtuple('LatLonTuple', ['lat', 'lon']) homedir = os.path.expanduser('~') + '/' class GenericException(Exception): def __init__(self, message): self.message = message class EarlyStop: def __init__(self, window_length=3, patience=5): self.patience = patience self.min = np.finfo(np.single).max self.cnt = 0 self.cnt_wait = 0 self.window = np.zeros(window_length, dtype=np.single) self.window.fill(np.nan) def check_stop(self, value): self.window[:-1] = self.window[1:] self.window[-1] = value if np.any(np.isnan(self.window)): return False ave = np.mean(self.window) if ave < self.min: self.min = ave self.cnt_wait = 0 return False else: self.cnt_wait += 1 if self.cnt_wait > self.patience: return True else: return False def get_time_tuple_utc(timestamp): dt_obj = datetime.datetime.fromtimestamp(timestamp, timezone.utc) return dt_obj, dt_obj.timetuple() def add_time_range_to_filename(pathname, tstart, tend): dt_obj, _ = get_time_tuple_utc(tstart) str_start = dt_obj.strftime('%Y%m%d%H') dt_obj, _ = get_time_tuple_utc(tend) str_end = dt_obj.strftime('%Y%m%d%H') filename = os.path.split(pathname)[1] w_o_ext, ext = os.path.splitext(filename) filename = w_o_ext+'_'+str_start+'_'+str_end+ext path = os.path.split(pathname)[0] path = path+'/'+filename return path def haversine_np(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) (lon1, lat1) must be broadcastable with (lon2, lat2). """ lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2]) dlon = lon2 - lon1 dlat = lat2 - lat1 a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2 c = 2 * np.arcsin(np.sqrt(a)) km = 6367 * c return km def bin_data_by(a, b, bin_ranges): nbins = len(bin_ranges) binned_data = [] for i in range(nbins): rng = bin_ranges[i] idxs = (b >= rng[0]) & (b < rng[1]) binned_data.append(a[idxs]) return binned_data def get_bin_ranges(lop, hip, bin_size=100): bin_ranges = [] delp = hip - lop nbins = int(delp/bin_size) for i in range(nbins): rng = [lop + i*bin_size, lop + i*bin_size + bin_size] bin_ranges.append(rng) return bin_ranges # t must be monotonic increasing def get_breaks(t, threshold): t_0 = t[0:t.shape[0]-1] t_1 = t[1:t.shape[0]] d = t_1 - t_0 idxs = np.nonzero(d > threshold) return idxs def pressure_to_altitude(pres, temp, prof_pres, prof_temp, sfc_pres=None, sfc_temp=None, sfc_elev=0): if not np.all(np.diff(prof_pres) > 0): raise GenericException("target pressure profile must be monotonic increasing") if pres < prof_pres[0]: raise GenericException("target pressure less than top of pressure profile") if temp is None: temp = np.interp(pres, prof_pres, prof_temp) i_top = np.argmax(np.extract(prof_pres <= pres, prof_pres)) + 1 pres_s = prof_pres.tolist() temp_s = prof_temp.tolist() pres_s = [pres] + pres_s[i_top:] temp_s = [temp] + temp_s[i_top:] if sfc_pres is not None: if pres > sfc_pres: # incoming pressure below surface return -1 prof_pres = np.array(pres_s) prof_temp = np.array(temp_s) i_bot = prof_pres.shape[0] - 1 if sfc_pres > prof_pres[i_bot]: # surface below profile bottom pres_s = pres_s + [sfc_pres] temp_s = temp_s + [sfc_temp] else: idx = np.argmax(np.extract(prof_pres < sfc_pres, prof_pres)) if sfc_temp is None: sfc_temp = np.interp(sfc_pres, prof_pres, prof_temp) pres_s = prof_pres.tolist() temp_s = prof_temp.tolist() pres_s = pres_s[0:idx+1] + [sfc_pres] temp_s = temp_s[0:idx+1] + [sfc_temp] prof_pres = np.array(pres_s) prof_temp = np.array(temp_s) prof_pres = prof_pres[::-1] prof_temp = prof_temp[::-1] prof_pres = prof_pres * units.hectopascal prof_temp = prof_temp * units.kelvin sfc_elev = sfc_elev * units.meter z = thickness_hydrostatic(prof_pres, prof_temp) + sfc_elev return z # http://fourier.eng.hmc.edu/e176/lectures/NM/node25.html def minimize_quadratic(xa, xb, xc, ya, yb, yc): x_m = xb + 0.5*(((ya-yb)*(xc-xb)*(xc-xb) - (yc-yb)*(xb-xa)*(xb-xa)) / ((ya-yb)*(xc-xb) + (yc-yb)*(xb-xa))) return x_m def value_to_index(nda, value): diff = np.abs(nda - value) idx = np.argmin(diff) return idx def find_bin_index(nda, value): idxs = np.arange(nda.shape[0]) above = value >= nda if not above.any(): return -1 below = value < nda if not below.any(): return -1 iL = idxs[above].max() return iL # array solzen must be degrees, missing values must NaN. For small roughly 50x50km regions only def is_day(solzen, test_angle=80.0): solzen = solzen.flatten() solzen = solzen[np.invert(np.isnan(solzen))] if len(solzen) == 0 or np.sum(solzen <= test_angle) < len(solzen): return False else: return True # array solzen must be degrees, missing values must NaN. For small roughly 50x50km regions only def is_night(solzen, test_angle=100.0): solzen = solzen.flatten() solzen = solzen[np.invert(np.isnan(solzen))] if len(solzen) == 0 or np.sum(solzen >= test_angle) < len(solzen): return False else: return True def check_oblique(satzen, test_angle=70.0): satzen = satzen.flatten() satzen = satzen[np.invert(np.isnan(satzen))] if len(satzen) == 0 or np.sum(satzen <= test_angle) < len(satzen): return False else: return True def get_grid_values_all(h5f, grid_name, scale_factor_name='scale_factor', add_offset_name='add_offset', fill_value_name='_FillValue', range_name='actual_range', fill_value=None): hfds = h5f[grid_name] attrs = hfds.attrs if attrs is None: raise GenericException('No attributes object for: '+grid_name) grd_vals = hfds[:,] if fill_value is not None: grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals) if scale_factor_name is not None: attr = attrs.get(scale_factor_name) if attr is None: raise GenericException('Attribute: '+scale_factor_name+' not found for variable: '+grid_name) scale_factor = attr[0] grd_vals = grd_vals * scale_factor if add_offset_name is not None: attr = attrs.get(add_offset_name) if attr is None: raise GenericException('Attribute: '+add_offset_name+' not found for variable: '+grid_name) add_offset = attr[0] grd_vals = grd_vals + add_offset if range_name is not None: attr = attrs.get(range_name) if attr is None: raise GenericException('Attribute: '+range_name+' not found for variable: '+grid_name) low = attr[0] high = attr[1] grd_vals = np.where(grd_vals < low, np.nan, grd_vals) grd_vals = np.where(grd_vals > high, np.nan, grd_vals) elif fill_value_name is not None: attr = attrs.get(fill_value_name) if attr is None: raise GenericException('Attribute: '+fill_value_name+' not found for variable: '+grid_name) fill_value = attr[0] grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals) return grd_vals # dt_str_0: start datetime string in format YYYY-MM-DD_HH:MM # dt_str_1: stop datetime string, if not None num_steps is computed # num_steps with increment of days, hours, minutes or seconds # dt_str_1 and num_steps cannot both be None # return num_steps+1 lists of datetime strings and timestamps (edges of a numpy histogram) def make_times(dt_str_0, dt_str_1=None, num_steps=None, days=None, hours=None, minutes=None, seconds=None): if days is not None: inc = 86400*days elif hours is not None: inc = 3600*hours elif minutes is not None: inc = 60*minutes else: inc = seconds dt_obj_s = [] ts_s = [] dto_0 = datetime.datetime.strptime(dt_str_0, '%Y-%m-%d_%H:%M').replace(tzinfo=timezone.utc) ts_0 = dto_0.timestamp() if dt_str_1 is not None: dto_1 = datetime.datetime.strptime(dt_str_1, '%Y-%m-%d_%H:%M').replace(tzinfo=timezone.utc) ts_1 = dto_1.timestamp() num_steps = int((ts_1 - ts_0)/inc) dt_obj_s.append(dto_0) ts_s.append(ts_0) dto_last = dto_0 for k in range(num_steps): dt_obj = dto_last + datetime.timedelta(seconds=inc) dt_obj_s.append(dt_obj) ts_s.append(dt_obj.timestamp()) dto_last = dt_obj return dt_obj_s, ts_s def make_histogram(values, edges): h = np.histogram(values, bins=edges) return h