from icing.pireps import pirep_icing
import numpy as np
import pickle
import matplotlib.pyplot as plt
import os
from util.util import get_time_tuple_utc, GenericException, add_time_range_to_filename, is_night, is_day
from aeolus.datasource import CLAVRx, GOESL1B
from util.geos_nav import GEOSNavigation
import h5py
import re
import datetime
from datetime import timezone
import glob

goes_date_format = '%Y%j%H'
goes16_directory = '/arcdata/goes/grb/goes16'  # /year/date/abi/L1b/RadC
clavrx_dir = '/ships19/cloud/scratch/ICING/'
dir_fmt = '%Y_%m_%d_%j'
# dir_list = [f.path for f in os.scandir('.') if f.is_dir()]
ds_dct = {}
goes_ds_dct = {}
#pirep_file = '/home/rink/data/pireps/pireps_2019010000_2019063023.csv'
pirep_file = '/home/rink/data/pireps/pireps_20180101_20200331.csv'

l1b_ds_list = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
               'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
               'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
l1b_ds_types = ['f4' for ds in l1b_ds_list]

ds_list = ['cld_height_acha', 'cld_geo_thick', 'cld_press_acha', 'sensor_zenith_angle', 'supercooled_prob_acha',
           'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_opd_acha', 'solar_zenith_angle',
           'cld_reff_acha', 'cld_reff_dcomp', 'cld_reff_dcomp_1', 'cld_reff_dcomp_2', 'cld_reff_dcomp_3',
           'cld_opd_dcomp', 'cld_opd_dcomp_1', 'cld_opd_dcomp_2', 'cld_opd_dcomp_3', 'cld_cwp_dcomp', 'iwc_dcomp',
           'lwc_dcomp', 'cld_emiss_acha', 'conv_cloud_fraction', 'cloud_type', 'cloud_phase', 'cloud_mask']
ds_types = ['f4' for i in range(23)] + ['i4' for i in range(3)]


a_clvr_file = '/home/rink/data/clavrx/clavrx_OR_ABI-L1b-RadC-M3C01_G16_s20190020002186.level2.nc'

icing_files = [f for f in glob.glob('/data/Personal/rink/icing_ml/icing_l1b_2*.h5')]
icing_l1b_files = []

no_icing_files = [f for f in glob.glob('/data/Personal/rink/icing_ml/no_icing_l1b_2*.h5')]
no_icing_l1b_files = []

train_params_day = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha',
                    'solar_zenith_angle', 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp',
                    'cloud_phase', 'cloud_mask']

train_params_night = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha',
                      'cld_press_acha', 'solar_zenith_angle', 'cld_reff_acha', 'cld_opd_acha', 'cloud_phase', 'cloud_mask']


def setup():
    ice_dict, no_ice_dict, neg_ice_dict = pirep_icing(pirep_file)
    return ice_dict, no_ice_dict, neg_ice_dict


def get_clavrx_datasource(timestamp):
    dt_obj, time_tup = get_time_tuple_utc(timestamp)
    date_dir_str = dt_obj.strftime(dir_fmt)
    ds = ds_dct.get(date_dir_str)
    if ds is None:
        ds = CLAVRx(clavrx_dir + date_dir_str + '/')
        ds_dct[date_dir_str] = ds
    return ds


def get_goes_datasource(timestamp):
    dt_obj, time_tup = get_time_tuple_utc(timestamp)

    yr_dir = str(dt_obj.timetuple().tm_year)
    date_dir = dt_obj.strftime(dir_fmt)

    files_path = goes16_directory + '/' + yr_dir + '/' + date_dir + '/abi' + '/L1b' + '/RadC/'
    ds = goes_ds_dct.get(date_dir)
    if ds is None:
        ds = GOESL1B(files_path)
        goes_ds_dct[date_dir] = ds
    return ds


def get_grid_values(h5f, grid_name, j_c, i_c, half_width, scale_factor_name='scale_factor', add_offset_name='add_offset'):
    hfds = h5f[grid_name]
    attrs = hfds.attrs
    ylen, xlen = hfds.shape

    j_l = j_c-half_width
    i_l = i_c-half_width
    if j_l < 0 or i_l < 0:
        return None

    j_r = j_c+half_width+1
    i_r = i_c+half_width+1
    if j_r >= ylen or i_r >= xlen:
        return None

    grd_vals = hfds[j_l:j_r, i_l:i_r]
    grd_vals = np.where(grd_vals == -999, np.nan, grd_vals)
    grd_vals = np.where(grd_vals == -127, np.nan, grd_vals)
    grd_vals = np.where(grd_vals == -32768, np.nan, grd_vals)

    if attrs is None:
        return grd_vals

    if scale_factor_name is not None:
        scale_factor = attrs.get(scale_factor_name)[0]
        grd_vals = grd_vals * scale_factor

    if add_offset_name is not None:
        add_offset = attrs.get(add_offset_name)[0]
        grd_vals = grd_vals + add_offset

    return grd_vals


def create_file(filename, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, icing_intensity, unq_ids):
    h5f_expl = h5py.File(a_clvr_file, 'r')
    h5f = h5py.File(filename, 'w')

    for idx, ds_name in enumerate(ds_list):
        data = data_dct[ds_name]
        h5f.create_dataset(ds_name, data=data, dtype=ds_types[idx])

    lon_ds = h5f.create_dataset('longitude', data=lon_c, dtype='f4')
    lon_ds.dims[0].label = 'time'
    lon_ds.attrs.create('units', data='degrees_east')
    lon_ds.attrs.create('long_name', data='PIREP longitude')

    lat_ds = h5f.create_dataset('latitude', data=lat_c, dtype='f4')
    lat_ds.dims[0].label = 'time'
    lat_ds.attrs.create('units', data='degrees_north')
    lat_ds.attrs.create('long_name', data='PIREP latitude')

    time_ds = h5f.create_dataset('time', data=time_s)
    time_ds.dims[0].label = 'time'
    time_ds.attrs.create('units', data='seconds since 1970-1-1 00:00:00')
    time_ds.attrs.create('long_name', data='PIREP time')

    ice_alt_ds = h5f.create_dataset('icing_altitude', data=fl_alt_s, dtype='f4')
    ice_alt_ds.dims[0].label = 'time'
    ice_alt_ds.attrs.create('units', data='m')
    ice_alt_ds.attrs.create('long_name', data='PIREP altitude')

    if icing_intensity is not None:
        icing_int_ds = h5f.create_dataset('icing_intensity', data=icing_intensity, dtype='i4')
        icing_int_ds.attrs.create('long_name', data='From PIREP. 0:No intensity report, 1:Trace, 2:Light, 3:Light Moderate, 4:Moderate, 5:Moderate Severe, 6:Severe')

    unq_ids_ds = h5f.create_dataset('unique_id', data=unq_ids, dtype='i4')
    unq_ids_ds.attrs.create('long_name', data='ID mapping to PIREP icing dictionary: see pireps.py')

    # copy relevant attributes
    for ds_name in ds_list:
        h5f_ds = h5f[ds_name]
        h5f_ds.attrs.create('standard_name', data=h5f_expl[ds_name].attrs.get('standard_name'))
        h5f_ds.attrs.create('long_name', data=h5f_expl[ds_name].attrs.get('long_name'))
        h5f_ds.attrs.create('units', data=h5f_expl[ds_name].attrs.get('units'))

        h5f_ds.dims[0].label = 'time'
        h5f_ds.dims[1].label = 'y'
        h5f_ds.dims[2].label = 'x'

    h5f.close()
    h5f_expl.close()


def run(pirep_dct, outfile=None, outfile_l1b=None, dt_str_start=None, dt_str_end=None, reduce=False):
    time_keys = list(pirep_dct.keys())
    l1b_grd_dct = {name: [] for name in l1b_ds_list}
    ds_grd_dct = {name: [] for name in ds_list}

    t_start = None
    t_end = None
    if (dt_str_start is not None) and (dt_str_end is not None):
        dto = datetime.datetime.strptime(dt_str_start, '%Y-%m-%d_%H:%M').replace(tzinfo=timezone.utc)
        dto.replace(tzinfo=timezone.utc)
        t_start = dto.timestamp()

        dto = datetime.datetime.strptime(dt_str_end, '%Y-%m-%d_%H:%M').replace(tzinfo=timezone.utc)
        dto.replace(tzinfo=timezone.utc)
        t_end = dto.timestamp()

    nav = GEOSNavigation(sub_lon=-75.0, CFAC=5.6E-05, COFF=-0.101332, LFAC=-5.6E-05, LOFF=0.128212, num_elems=2500, num_lines=1500)

    lon_s = np.zeros(1)
    lat_s = np.zeros(1)
    last_clvr_file = None
    last_h5f = None

    lon_c = []
    lat_c = []
    time_s = []
    fl_alt_s = []
    ice_int_s = []
    unq_ids = []

    for idx, time in enumerate(time_keys):
        if t_start is not None:
            if time < t_start:
                continue
            if time > t_end:
                continue

        try:
            clvr_ds = get_clavrx_datasource(time)
        except Exception:
            continue

        clvr_file = clvr_ds.get_file(time)[0]
        if clvr_file is None:
            continue

        if clvr_file != last_clvr_file:
            try:
                h5f = h5py.File(clvr_file, 'r')
            except Exception:
                if h5f is not None:
                    h5f.close()
                print('Problem with file: ', clvr_file)
                continue
            if last_h5f is not None:
                last_h5f.close()
            last_h5f = h5f
            last_clvr_file = clvr_file
        else:
            h5f = last_h5f

        reports = pirep_dct[time]
        for tup in reports:
            lat, lon, fl, I, uid, rpt_str = tup
            lat_s[0] = lat
            lon_s[0] = lon

            cc, ll = nav.earth_to_lc_s(lon_s, lat_s)
            if cc[0] < 0:
                continue

            cnt_a = 0
            for didx, ds_name in enumerate(ds_list):
                gvals = get_grid_values(h5f, ds_name, ll[0], cc[0], 20)
                if gvals is not None:
                    ds_grd_dct[ds_name].append(gvals)
                    cnt_a += 1

            cnt_b = 0
            for didx, ds_name in enumerate(l1b_ds_list):
                gvals = get_grid_values(h5f, ds_name, ll[0], cc[0], 20)
                if gvals is not None:
                    l1b_grd_dct[ds_name].append(gvals)
                    cnt_b += 1

            if cnt_a > 0 and cnt_a != len(ds_list):
                raise GenericException('weirdness')
            if cnt_b > 0 and cnt_b != len(l1b_ds_list):
                raise GenericException('weirdness')

            if cnt_a == len(ds_list) and cnt_b == len(l1b_ds_list):
                lon_c.append(lon_s[0])
                lat_c.append(lat_s[0])
                time_s.append(time)
                fl_alt_s.append(fl)
                ice_int_s.append(I)
                unq_ids.append(uid)

            if reduce is True:
                break

    if len(time_s) == 0:
        return

    t_start = time_s[0]
    t_end = time_s[len(time_s)-1]

    data_dct = {}
    for ds_name in ds_list:
        data_dct[ds_name] = np.array(ds_grd_dct[ds_name])
    lon_c = np.array(lon_c)
    lat_c = np.array(lat_c)
    time_s = np.array(time_s)
    fl_alt_s = np.array(fl_alt_s)
    ice_int_s = np.array(ice_int_s)
    unq_ids = np.array(unq_ids)

    if outfile is not None:
        outfile = add_time_range_to_filename(outfile, t_start, t_end)
        create_file(outfile, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids)

    data_dct = {}
    for ds_name in l1b_ds_list:
        data_dct[ds_name] = np.array(l1b_grd_dct[ds_name])

    if outfile_l1b is not None:
        outfile_l1b = add_time_range_to_filename(outfile_l1b, t_start, t_end)
        create_file(outfile_l1b, data_dct, l1b_ds_list, l1b_ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids)


def analyze(ice_dct, no_ice_dct):

    last_file = None
    ice_files = []
    ice_times = []
    for ts in list(ice_dct.keys()):
        try:
            ds = get_goes_datasource(ts)
            goes_file, t_0, _ = ds.get_file(ts)
            if goes_file is not None and goes_file != last_file:
                ice_files.append(goes_file)
                ice_times.append(t_0)
                last_file = goes_file
        except Exception:
            continue

    last_file = None
    no_ice_files = []
    no_ice_times = []
    for ts in list(no_ice_dct.keys()):
        try:
            ds = get_goes_datasource(ts)
            goes_file, t_0, _ = ds.get_file(ts)
            if goes_file is not None and goes_file != last_file:
                no_ice_files.append(goes_file)
                no_ice_times.append(t_0)
                last_file = goes_file
        except Exception:
            continue

    ice_times = np.array(ice_times)
    no_ice_times = np.array(no_ice_times)

    itrsct_vals, comm1, comm2 = np.intersect1d(no_ice_times, ice_times, return_indices=True)

    ice_indexes = np.arange(len(ice_times))

    ucomm2 = np.setxor1d(comm2, ice_indexes)
    np.random.seed(42)
    np.random.shuffle(ucomm2)
    ucomm2 = ucomm2[0:8000]

    files_comm = []
    for i in comm2:
        files_comm.append(ice_files[i])

    files_extra = []
    times_extra = []
    for i in ucomm2:
        files_extra.append(ice_files[i])
        times_extra.append(ice_times[i])

    files = files_comm + files_extra
    times = itrsct_vals.tolist() + times_extra
    times = np.array(times)

    sidxs = np.argsort(times)
    for i in sidxs:
        filename = os.path.split(files[i])[1]
        so = re.search('_s\\d{11}', filename)
        dt_str = so.group()
        print(dt_str[2:])


def process(ice_dct, no_ice_dct, neg_ice_dct):
    new_ice_dct = {}
    new_no_ice_dct = {}
    new_neg_ice_dct = {}

    ice_keys_5_6 = []
    ice_keys_1 = []
    ice_keys_4 = []
    ice_keys_3 = []
    ice_keys_2 = []

    print('num keys ice, no_ice, neg_ice: ', len(ice_dct), len(no_ice_dct), len(neg_ice_dct))
    no_intensity_cnt = 0
    num_ice_reports = 0

    for ts in list(ice_dct.keys()):
        rpts = ice_dct[ts]
        for tup in rpts:
            num_ice_reports += 1
            if tup[3] == 5 or tup[3] == 6:
                ice_keys_5_6.append(ts)
            elif tup[3] == 1:
                ice_keys_1.append(ts)
            elif tup[3] == 4:
                ice_keys_4.append(ts)
            elif tup[3] == 3:
                ice_keys_3.append(ts)
            elif tup[3] == 2:
                ice_keys_2.append(ts)
            else:
                no_intensity_cnt += 1

    no_ice_keys = []
    for ts in list(no_ice_dct.keys()):
        rpts = no_ice_dct[ts]
        for tup in rpts:
            no_ice_keys.append(ts)

    neg_ice_keys = []
    for ts in list(neg_ice_dct.keys()):
            rpts = neg_ice_dct[ts]
            for tup in rpts:
                neg_ice_keys.append(ts)

    print('num ice reports, no ice, neg ice: ', num_ice_reports, len(no_ice_keys), len(neg_ice_keys))
    print('------------------------------------------------')

    ice_keys_5_6 = np.array(ice_keys_5_6)
    print('5_6: ', ice_keys_5_6.shape)

    ice_keys_4 = np.array(ice_keys_4)
    print('4: ', ice_keys_4.shape)

    ice_keys_3 = np.array(ice_keys_3)
    print('3: ', ice_keys_3.shape)

    ice_keys_2 = np.array(ice_keys_2)
    print('2: ', ice_keys_2.shape)
    np.random.seed(42)
    np.random.shuffle(ice_keys_2)
    ice_keys_2 = ice_keys_2[0:70000]

    ice_keys_1 = np.array(ice_keys_1)
    print('1: ', ice_keys_1.shape)
    print('no intensity: ', no_intensity_cnt)

    ice_keys = np.concatenate([ice_keys_5_6, ice_keys_1, ice_keys_2, ice_keys_3, ice_keys_4])
    uniq_sorted_keys = np.unique(ice_keys)
    print('ice: ', ice_keys.shape, uniq_sorted_keys.shape)

    uniq_sorted_keys = uniq_sorted_keys.tolist()
    for key in uniq_sorted_keys:
        new_ice_dct[key] = ice_dct[key]

    no_ice_keys = np.array(no_ice_keys)
    print('no ice total: ', no_ice_keys.shape)
    np.random.seed(42)
    np.random.shuffle(no_ice_keys)
    no_ice_keys = no_ice_keys[0:150000]
    uniq_sorted_no_ice = np.unique(no_ice_keys)
    print('no ice: ', no_ice_keys.shape, uniq_sorted_no_ice.shape)

    uniq_sorted_no_ice = uniq_sorted_no_ice.tolist()
    for key in uniq_sorted_no_ice:
        new_no_ice_dct[key] = no_ice_dct[key]

    neg_ice_keys = np.array(neg_ice_keys)
    print('neg ice total: ', neg_ice_keys.shape)
    np.random.seed(42)
    np.random.shuffle(neg_ice_keys)
    neg_ice_keys = neg_ice_keys[0:10000]
    uniq_sorted_neg_ice = np.unique(neg_ice_keys)
    print('neg ice: ', neg_ice_keys.shape, uniq_sorted_neg_ice.shape)

    for key in uniq_sorted_neg_ice:
        new_neg_ice_dct[key] = neg_ice_dct[key]

    return new_ice_dct, new_no_ice_dct, new_neg_ice_dct


def analyze2(filename, filename_l1b):
    f = h5py.File(filename, 'r')
    icing_alt = f['icing_altitude'][:]
    cld_top_hgt = f['cld_height_acha'][:, 10:30, 10:30]
    cld_phase = f['cloud_phase'][:, 10:30, 10:30]
    cld_opd_dc = f['cld_opd_dcomp'][:, 10:30, 10:30]
    cld_opd = f['cld_opd_acha'][:, 10:30, 10:30]
    solzen = f['solar_zenith_angle'][:, 10:30, 10:30]

    f_l1b = h5py.File(filename_l1b, 'r')
    bt_11um = f_l1b['temp_11_0um_nom'][:, 10:30, 10:30]

    cld_opd = cld_opd.flatten()
    cld_opd_dc = cld_opd_dc.flatten()
    solzen = solzen.flatten()

    keep1 = np.invert(np.isnan(cld_opd))
    keep2 = np.invert(np.isnan(solzen))
    keep = keep1 & keep2
    cld_opd = cld_opd[np.invert(np.isnan(cld_opd))]
    cld_opd_dc = cld_opd_dc[keep]
    solzen = solzen[keep]

    plt.hist(cld_opd, bins=20)
    plt.show()
    plt.hist(cld_opd_dc, bins=20)
    plt.show()


# --------------------------------------------
x_a = 10
x_b = 30
y_a = x_a
y_b = x_b
nx = ny = (x_b - x_a)
nx_x_ny = nx * ny


def run_daynight(filename, filename_l1b, day_night='ANY'):
    f = h5py.File(filename, 'r')
    f_l1b = h5py.File(filename_l1b, 'r')

    solzen = f['solar_zenith_angle'][:, y_a:y_b, x_a:x_b]
    num_obs = solzen.shape[0]

    idxs = []
    for i in range(num_obs):
        if day_night == 'NIGHT':
            if not is_day(solzen[i,]):
                idxs.append(i)
        elif day_night == 'DAY':
            if is_day(solzen[i,]):
                idxs.append(i)

    keep_idxs = np.array(idxs)

    data_dct = {}
    for didx, ds_name in enumerate(ds_list):
        data_dct[ds_name] = f[ds_name][keep_idxs,]

    lon_c = f['longitude'][keep_idxs]
    lat_c = f['latitude'][keep_idxs]
    time_s = f['time'][keep_idxs]
    fl_alt_s = f['icing_altitude'][keep_idxs]
    ice_int_s = f['icing_intensity'][keep_idxs]
    unq_ids = f['unique_id'][keep_idxs]

    path, fname = os.path.split(filename)
    fbase, fext = os.path.splitext(fname)
    outfile = path + '/' + fbase + '_' + day_night + fext

    create_file(outfile, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids)

    data_dct = {}
    for didx, ds_name in enumerate(l1b_ds_list):
        data_dct[ds_name] = f_l1b[ds_name][keep_idxs]

    path, fname = os.path.split(filename_l1b)
    fbase, fext = os.path.splitext(fname)
    outfile_l1b = path + '/' + fbase + '_' + 'QC' + '_' + day_night + fext

    create_file(outfile_l1b, data_dct, l1b_ds_list, l1b_ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids)

    f.close()
    f_l1b.close()


def run_qc(filename, filename_l1b, day_night='ANY', pass_thresh_frac=0.25):

    f = h5py.File(filename, 'r')
    icing_alt = f['icing_altitude'][:]
    cld_top_hgt = f['cld_height_acha'][:, y_a:y_b, x_a:x_b]
    cld_phase = f['cloud_phase'][:, y_a:y_b, x_a:x_b]

    if day_night == 'DAY':
        cld_opd = f['cld_opd_dcomp'][:, y_a:y_b, x_a:x_b]
    else:
        cld_opd = f['cld_opd_acha'][:, y_a:y_b, x_a:x_b]

    cld_mask = f['cloud_mask'][:, y_a:y_b, x_a:x_b]
    sol_zen = f['solar_zenith_angle'][:, y_a:y_b, x_a:x_b]

    f_l1b = h5py.File(filename_l1b, 'r')
    bt_11um = f_l1b['temp_11_0um_nom'][:, y_a:y_b, x_a:x_b]

    print('num pireps all: ', len(icing_alt))

    mask, idxs, num_tested = apply_qc_icing_pireps(icing_alt, cld_top_hgt, cld_phase, cld_opd, cld_mask, bt_11um, sol_zen, day_night=day_night)

    print('num pireps, day_night: ', len(mask), day_night)

    keep_idxs = []

    for i in range(len(mask)):
        if (np.sum(mask[i]) / nx_x_ny) > pass_thresh_frac:
            keep_idxs.append(idxs[i])

    print('num valid pireps: ', len(keep_idxs))
    keep_idxs = np.array(keep_idxs)

    data_dct = {}
    for didx, ds_name in enumerate(ds_list):
        data_dct[ds_name] = f[ds_name][keep_idxs,]

    lon_c = f['longitude'][keep_idxs]
    lat_c = f['latitude'][keep_idxs]
    time_s = f['time'][keep_idxs]
    fl_alt_s = f['icing_altitude'][keep_idxs]
    ice_int_s = f['icing_intensity'][keep_idxs]
    unq_ids = f['unique_id'][keep_idxs]

    path, fname = os.path.split(filename)
    fbase, fext = os.path.splitext(fname)
    outfile = path + '/' + fbase + '_' + 'QC' + '_' + day_night + fext

    create_file(outfile, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids)

    data_dct = {}
    for didx, ds_name in enumerate(l1b_ds_list):
        data_dct[ds_name] = f_l1b[ds_name][keep_idxs]

    path, fname = os.path.split(filename_l1b)
    fbase, fext = os.path.splitext(fname)
    outfile_l1b = path + '/' + fbase + '_' + 'QC' + '_' + day_night + fext

    create_file(outfile_l1b, data_dct, l1b_ds_list, l1b_ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids)

    f.close()
    f_l1b.close()


def apply_qc_icing_pireps(icing_alt, cld_top_hgt, cld_phase, cld_opd, cld_mask, bt_11um, solzen, day_night='ANY'):
    opd_thick_threshold = 2
    if day_night == 'DAY':
        opd_thick_threshold = 20
    closeness = 100.0  # meters
    num_obs = len(icing_alt)
    cld_mask = cld_mask.reshape((num_obs, -1))
    cld_top_hgt = cld_top_hgt.reshape((num_obs, -1))
    cld_phase = cld_phase.reshape((num_obs, -1))
    cld_opd = cld_opd.reshape((num_obs, -1))
    bt_11um = bt_11um.reshape((num_obs, -1))

    mask = []
    idxs = []
    num_tested = []
    for i in range(num_obs):
        if day_night == 'NIGHT':
            if is_day(solzen[i,]):
                continue
        elif day_night == 'DAY':
            if not is_day(solzen[i,]):
                continue

        keep_0 = np.logical_or(cld_mask[i,] == 2, cld_mask[i,] == 3)  # cloudy
        keep_1 = np.invert(np.isnan(cld_top_hgt[i,]))
        keep_2 = np.invert(np.isnan(bt_11um[i,]))
        keep_3 = np.invert(np.isnan(cld_opd[i,]))
        keep = keep_0 & keep_1 & keep_2 & keep_3
        num_keep = np.sum(keep)
        if num_keep == 0:
            continue

        keep = np.where(keep, cld_top_hgt[i,] > icing_alt[i], False)

        keep = np.where(keep,
            np.invert((cld_phase[i,] == 4) &
                np.logical_and(cld_top_hgt[i,]+closeness > icing_alt[i], cld_top_hgt[i,]-closeness < icing_alt[i])),
                     False)

        keep = np.where(keep, (cld_opd[i,] >= opd_thick_threshold) & (cld_phase[i,] == 4) & (cld_top_hgt[i,] > icing_alt[i]), False)

        keep = np.where(keep, np.invert((cld_phase[i,] == 4) & (cld_opd[i,] < 0.1) & (cld_top_hgt[i,] > icing_alt[i])), False)

        keep = np.where(keep, np.invert(bt_11um[i,] > 270.0), False)

        keep = np.where(keep, np.invert(bt_11um[i,] < 228.0), False)

        mask.append(keep)
        idxs.append(i)
        num_tested.append(num_keep)

    return mask, idxs, num_tested


def fov_extract(outfile='/home/rink/fovs_l1b_out.h5', train_params=l1b_ds_list, ds_types=l1b_ds_types):
    ice_times = []
    icing_int_s = []
    ice_lons = []
    ice_lats = []

    no_ice_times = []
    no_ice_lons = []
    no_ice_lats = []

    h5_s_icing = []
    h5_s_no_icing = []

    icing_data_dct = {ds: [] for ds in train_params}
    no_icing_data_dct = {ds: [] for ds in train_params}

    sub_indexes = np.arange(400)

    num_ice = 0
    for fidx in range(len(icing_files)):
        fname = icing_files[fidx]
        f = h5py.File(fname, 'r')
        h5_s_icing.append(f)

        times = f['time'][:]
        num_obs = len(times)

        icing_int = f['icing_intensity'][:]
        lons = f['longitude'][:]
        lats = f['latitude'][:]

        cld_mask = f['cloud_mask'][:, 10:30, 10:30]
        cld_mask = cld_mask.reshape((num_obs, -1))

        cld_top_temp = f['cld_temp_acha'][:, 10:30, 10:30]
        cld_top_temp = cld_top_temp.reshape((num_obs, -1))

        for i in range(num_obs):
            keep_0 = np.logical_or(cld_mask[i,] == 2, cld_mask[i,] == 3)  # cloudy
            keep_1 = np.invert(np.isnan(cld_top_temp[i,]))
            keep = keep_0 & keep_1
            keep = np.where(keep, cld_top_temp[i,] < 273.0, False)
            k_idxs = sub_indexes[keep]
            np.random.shuffle(k_idxs)
            if len(k_idxs) > 20:
                k_idxs = k_idxs[0:20]
            else:
                k_idxs = k_idxs[0:len(k_idxs)]
            num_ice += len(k_idxs)

            for ds_name in train_params:
                dat = f[ds_name][i, 10:30, 10:30].flatten()
                icing_data_dct[ds_name].append(dat[k_idxs])

            icing_int_s.append(np.full(len(k_idxs), icing_int[i]))
            ice_times.append(np.full(len(k_idxs), times[i]))
            ice_lons.append(np.full(len(k_idxs), lons[i]))
            ice_lats.append(np.full(len(k_idxs), lats[i]))

        print(fname)

    for ds_name in train_params:
        lst = icing_data_dct[ds_name]
        icing_data_dct[ds_name] = np.concatenate(lst)

    icing_int_s = np.concatenate(icing_int_s)
    ice_times = np.concatenate(ice_times)
    ice_lons = np.concatenate(ice_lons)
    ice_lats = np.concatenate(ice_lats)

    num_no_ice = 0
    for fidx in range(len(no_icing_files)):
        fname = no_icing_files[fidx]
        f = h5py.File(fname, 'r')
        h5_s_no_icing.append(f)

        times = f['time']
        num_obs = len(times)
        lons = f['longitude']
        lats = f['latitude']

        cld_mask = f['cloud_mask'][:, 10:30, 10:30]
        cld_mask = cld_mask.reshape((num_obs, -1))

        cld_top_temp = f['cld_temp_acha'][:, 10:30, 10:30]
        cld_top_temp = cld_top_temp.reshape((num_obs, -1))

        for i in range(num_obs):
            keep_0 = np.logical_or(cld_mask[i,] == 2, cld_mask[i,] == 3)  # cloudy
            keep_1 = np.invert(np.isnan(cld_top_temp[i,]))
            keep = keep_0 & keep_1
            keep = np.where(keep, cld_top_temp[i,] < 273.0, False)
            k_idxs = sub_indexes[keep]
            np.random.shuffle(k_idxs)
            if len(k_idxs) > 10:
                k_idxs = k_idxs[0:10]
            else:
                k_idxs = k_idxs[0:len(k_idxs)]
            num_no_ice += len(k_idxs)
            no_ice_times.append(np.full(len(k_idxs), times[i]))
            no_ice_lons.append(np.full(len(k_idxs), lons[i]))
            no_ice_lats.append(np.full(len(k_idxs), lats[i]))

            for ds_name in train_params:
                dat = f[ds_name][i, 10:30, 10:30].flatten()
                no_icing_data_dct[ds_name].append(dat[k_idxs])

        print(fname)

    for ds_name in train_params:
        lst = no_icing_data_dct[ds_name]
        no_icing_data_dct[ds_name] = np.concatenate(lst)
    no_icing_int_s = np.full(num_no_ice, -1)
    no_ice_times = np.concatenate(no_ice_times)
    no_ice_lons = np.concatenate(no_ice_lons)
    no_ice_lats = np.concatenate(no_ice_lats)

    icing_intensity = np.concatenate([icing_int_s, no_icing_int_s])
    icing_times = np.concatenate([ice_times, no_ice_times])
    icing_lons = np.concatenate([ice_lons, no_ice_lons])
    icing_lats = np.concatenate([ice_lats, no_ice_lats])

    data_dct = {}
    for ds_name in train_params:
        data_dct[ds_name] = np.concatenate([icing_data_dct[ds_name], no_icing_data_dct[ds_name]])

    # apply shuffle indexes
    # ds_indexes = np.arange(num_ice + num_no_ice)
    # np.random.shuffle(ds_indexes)
    #
    # for ds_name in train_params:
    #     data_dct[ds_name] = data_dct[ds_name][ds_indexes]
    # icing_intensity = icing_intensity[ds_indexes]
    # icing_times = icing_times[ds_indexes]
    # icing_lons = icing_lons[ds_indexes]
    # icing_lats = icing_lats[ds_indexes]

    # do sort
    ds_indexes = np.argsort(icing_times)
    for ds_name in train_params:
        data_dct[ds_name] = data_dct[ds_name][ds_indexes]
    icing_intensity = icing_intensity[ds_indexes]
    icing_times = icing_times[ds_indexes]
    icing_lons = icing_lons[ds_indexes]
    icing_lats = icing_lats[ds_indexes]

    h5f_expl = h5py.File(a_clvr_file, 'r')
    h5f_out = h5py.File(outfile, 'w')

    for idx, ds_name in enumerate(train_params):
        dt = ds_types[ds_list.index(ds_name)]
        data = data_dct[ds_name]
        h5f_out.create_dataset(ds_name, data=data, dtype=dt)

    icing_int_ds = h5f_out.create_dataset('icing_intensity', data=icing_intensity, dtype='i4')
    icing_int_ds.attrs.create('long_name', data='From PIREP. -1:No Icing, 1:Trace, 2:Light, 3:Light Moderate, 4:Moderate, 5:Moderate Severe, 6:Severe')

    time_ds = h5f_out.create_dataset('time', data=icing_times, dtype='f4')
    time_ds.attrs.create('units', data='seconds since 1970-1-1 00:00:00')
    time_ds.attrs.create('long_name', data='PIREP time')

    lon_ds = h5f_out.create_dataset('longitude', data=icing_lons, dtype='f4')
    lon_ds.attrs.create('units', data='degrees_east')
    lon_ds.attrs.create('long_name', data='PIREP longitude')

    lat_ds = h5f_out.create_dataset('latitude', data=icing_lats, dtype='f4')
    lat_ds.attrs.create('units', data='degrees_north')
    lat_ds.attrs.create('long_name', data='PIREP latitude')

    # copy relevant attributes
    for ds_name in train_params:
        h5f_ds = h5f_out[ds_name]
        h5f_ds.attrs.create('standard_name', data=h5f_expl[ds_name].attrs.get('standard_name'))
        h5f_ds.attrs.create('long_name', data=h5f_expl[ds_name].attrs.get('long_name'))
        h5f_ds.attrs.create('units', data=h5f_expl[ds_name].attrs.get('units'))
        attr = h5f_expl[ds_name].attrs.get('actual_range')
        if attr is not None:
            h5f_ds.attrs.create('actual_range', data=attr)
        attr = h5f_expl[ds_name].attrs.get('flag_values')
        if attr is not None:
            h5f_ds.attrs.create('flag_values', data=attr)

    # --- close files
    for h5f in h5_s_icing:
        h5f.close()

    for h5f in h5_s_no_icing:
        h5f.close()

    h5f_out.close()
    h5f_expl.close()


def tile_extract(trnfile='/home/rink/tiles_l1b_train.h5', tstfile='/home/rink/tiles_l1b_test.h5',
                 train_params=l1b_ds_list, ds_types=l1b_ds_types, augment=False, split=0.2):
    icing_int_s = []
    ice_time_s = []
    no_ice_time_s = []
    ice_lon_s = []
    no_ice_lon_s = []
    ice_lat_s = []
    no_ice_lat_s = []

    h5_s_icing = []
    h5_s_no_icing = []

    icing_data_dct = {ds: [] for ds in train_params}
    no_icing_data_dct = {ds: [] for ds in train_params}

    for fidx in range(len(icing_files)):
        fname = icing_files[fidx]
        f = h5py.File(fname, 'r')
        h5_s_icing.append(f)

        times = f['time'][:]
        num_obs = len(times)
        lons = f['longitude']
        lats = f['latitude']

        icing_int = f['icing_intensity'][:]

        for i in range(num_obs):
            for ds_name in train_params:
                dat = f[ds_name][i, 12:28, 12:28]
                icing_data_dct[ds_name].append(dat)

            icing_int_s.append(icing_int[i])
            ice_time_s.append(times[i])
            ice_lon_s.append(lons[i])
            ice_lat_s.append(lats[i])

        print(fname)

    for ds_name in train_params:
        lst = icing_data_dct[ds_name]
        icing_data_dct[ds_name] = np.stack(lst, axis=0)
    icing_int_s = np.array(icing_int_s)
    ice_time_s = np.array(ice_time_s)
    ice_lon_s = np.array(ice_lon_s)
    ice_lat_s = np.array(ice_lat_s)
    num_ice = icing_int_s.shape[0]

    # No icing  ------------------------------------------------------------
    num_no_ice = 0
    for fidx in range(len(no_icing_files)):
        fname = no_icing_files[fidx]
        f = h5py.File(fname, 'r')
        h5_s_no_icing.append(f)

        times = f['time']
        num_obs = len(times)
        lons = f['longitude']
        lats = f['latitude']

        for i in range(num_obs):
            for ds_name in train_params:
                dat = f[ds_name][i, 12:28, 12:28]
                no_icing_data_dct[ds_name].append(dat)
            num_no_ice += 1
            no_ice_time_s.append(times[i])
            no_ice_lon_s.append(lons[i])
            no_ice_lat_s.append(lats[i])

        print(fname)

    for ds_name in train_params:
        lst = no_icing_data_dct[ds_name]
        no_icing_data_dct[ds_name] = np.stack(lst, axis=0)
    no_icing_int_s = np.full(num_no_ice, -1)
    no_ice_time_s = np.array(no_ice_time_s)
    no_ice_lon_s = np.array(no_ice_lon_s)
    no_ice_lat_s = np.array(no_ice_lat_s)

    icing_intensity = np.concatenate([icing_int_s, no_icing_int_s])
    icing_times = np.concatenate([ice_time_s, no_ice_time_s])
    icing_lons = np.concatenate([ice_lon_s, no_ice_lon_s])
    icing_lats = np.concatenate([ice_lat_s, no_ice_lat_s])

    data_dct = {}
    for ds_name in train_params:
        data_dct[ds_name] = np.concatenate([icing_data_dct[ds_name], no_icing_data_dct[ds_name]])

    trn_idxs, tst_idxs = split_data(icing_intensity.shape[0], shuffle=False, perc=split)

    trn_data_dct = {}
    for ds_name in train_params:
        trn_data_dct[ds_name] = data_dct[ds_name][trn_idxs,]
    trn_icing_intesity = icing_intensity[trn_idxs,]
    trn_icing_times = icing_times[trn_idxs,]
    trn_icing_lons = icing_lons[trn_idxs,]
    trn_icing_lats = icing_lats[trn_idxs,]

    #  Data augmentation -------------------------------------------------------------
    if augment:
        trn_data_dct_aug = {ds_name: [] for ds_name in train_params}
        trn_icing_intesity_aug = []
        trn_icing_times_aug = []
        trn_icing_lons_aug = []
        trn_icing_lats_aug = []

        for k in range(trn_icing_intesity.shape[0]):
            iceint = trn_icing_intesity[k]
            icetime = trn_icing_times[k]
            icelon = trn_icing_lons[k]
            icelat = trn_icing_lats[k]
            if iceint >= 3:
                for ds_name in train_params:
                    dat = trn_data_dct[ds_name]
                    trn_data_dct_aug[ds_name].append(np.fliplr(dat[k,]))
                    trn_data_dct_aug[ds_name].append(np.flipud(dat[k,]))
                    trn_data_dct_aug[ds_name].append(np.rot90(dat[k,]))

                trn_icing_intesity_aug.append(iceint)
                trn_icing_intesity_aug.append(iceint)
                trn_icing_intesity_aug.append(iceint)

                trn_icing_times_aug.append(icetime)
                trn_icing_times_aug.append(icetime)
                trn_icing_times_aug.append(icetime)

                trn_icing_lons_aug.append(icelon)
                trn_icing_lons_aug.append(icelon)
                trn_icing_lons_aug.append(icelon)

                trn_icing_lats_aug.append(icelat)
                trn_icing_lats_aug.append(icelat)
                trn_icing_lats_aug.append(icelat)

        for ds_name in train_params:
            trn_data_dct_aug[ds_name] = np.stack(trn_data_dct_aug[ds_name])
        trn_icing_intesity_aug = np.stack(trn_icing_intesity_aug)
        trn_icing_times_aug = np.stack(trn_icing_intesity_aug)
        trn_icing_lons_aug = np.stack(trn_icing_lons_aug)
        trn_icing_lats_aug = np.stack(trn_icing_lats_aug)

        for ds_name in train_params:
            trn_data_dct[ds_name] = np.concatenate([trn_data_dct[ds_name], trn_data_dct_aug[ds_name]])
        trn_icing_intensity = np.concatenate([trn_icing_intesity, trn_icing_intesity_aug])
        trn_icing_times = np.concatenate([trn_icing_times, trn_icing_times_aug])
        trn_icing_lons = np.concatenate([trn_icing_lons, trn_icing_lons_aug])
        trn_icing_lats = np.concatenate([trn_icing_lats, trn_icing_lats_aug])

    # do sort
    ds_indexes = np.argsort(trn_icing_times)
    for ds_name in train_params:
        trn_data_dct[ds_name] = trn_data_dct[ds_name][ds_indexes]
    trn_icing_intensity = trn_icing_intensity[ds_indexes]
    trn_icing_times = trn_icing_times[ds_indexes]
    trn_icing_lons = trn_icing_lons[ds_indexes]
    trn_icing_lats = trn_icing_lats[ds_indexes]

    write_file(trnfile, train_params, trn_data_dct, trn_icing_intensity, trn_icing_times, trn_icing_lons, trn_icing_lats)

    tst_data_dct = {}
    for ds_name in train_params:
        tst_data_dct[ds_name] = data_dct[ds_name][tst_idxs,]
    tst_icing_intensity = icing_intensity[tst_idxs,]
    tst_icing_times = icing_times[tst_idxs,]
    tst_icing_lons = icing_lons[tst_idxs,]
    tst_icing_lats = icing_lats[tst_idxs,]

    # Do shuffle
    # ds_indexes = np.arange(num_ice + num_no_ice)
    # np.random.shuffle(ds_indexes)
    #
    # for ds_name in train_params:
    #     data_dct[ds_name] = data_dct[ds_name][ds_indexes]
    # icing_intensity = icing_intensity[ds_indexes]
    # icing_times = icing_times[ds_indexes]
    # icing_lons = icing_lons[ds_indexes]
    # icing_lats = icing_lats[ds_indexes]

    # do sort
    ds_indexes = np.argsort(tst_icing_times)
    for ds_name in train_params:
        tst_data_dct[ds_name] = tst_data_dct[ds_name][ds_indexes]
    tst_icing_intensity = tst_icing_intensity[ds_indexes]
    tst_icing_times = tst_icing_times[ds_indexes]
    tst_icing_lons = tst_icing_lons[ds_indexes]
    tst_icing_lats = tst_icing_lats[ds_indexes]

    write_file(tstfile, train_params, tst_data_dct, tst_icing_intensity, tst_icing_times, tst_icing_lons, tst_icing_lats)

    # --- close files
    for h5f in h5_s_icing:
        h5f.close()

    for h5f in h5_s_no_icing:
        h5f.close()


def write_file(outfile, train_params, data_dct, icing_intensity, icing_times, icing_lons, icing_lats):
    h5f_expl = h5py.File(a_clvr_file, 'r')
    h5f_out = h5py.File(outfile, 'w')

    for idx, ds_name in enumerate(train_params):
        dt = ds_types[idx]
        data = data_dct[ds_name]
        h5f_out.create_dataset(ds_name, data=data, dtype=dt)

    icing_int_ds = h5f_out.create_dataset('icing_intensity', data=icing_intensity, dtype='i4')
    icing_int_ds.attrs.create('long_name', data='From PIREP. -1:No Icing, 1:Trace, 2:Light, 3:Light Moderate, 4:Moderate, 5:Moderate Severe, 6:Severe')

    time_ds = h5f_out.create_dataset('time', data=icing_times, dtype='f4')
    time_ds.attrs.create('units', data='seconds since 1970-1-1 00:00:00')
    time_ds.attrs.create('long_name', data='PIREP time')

    lon_ds = h5f_out.create_dataset('longitude', data=icing_lons, dtype='f4')
    lon_ds.attrs.create('units', data='degrees_east')
    lon_ds.attrs.create('long_name', data='PIREP longitude')

    lat_ds = h5f_out.create_dataset('latitude', data=icing_lats, dtype='f4')
    lat_ds.attrs.create('units', data='degrees_north')
    lat_ds.attrs.create('long_name', data='PIREP latitude')

    # copy relevant attributes
    for ds_name in train_params:
        h5f_ds = h5f_out[ds_name]
        h5f_ds.attrs.create('standard_name', data=h5f_expl[ds_name].attrs.get('standard_name'))
        h5f_ds.attrs.create('long_name', data=h5f_expl[ds_name].attrs.get('long_name'))
        h5f_ds.attrs.create('units', data=h5f_expl[ds_name].attrs.get('units'))
        attr = h5f_expl[ds_name].attrs.get('actual_range')
        if attr is not None:
            h5f_ds.attrs.create('actual_range', data=attr)
        attr = h5f_expl[ds_name].attrs.get('flag_values')
        if attr is not None:
            h5f_ds.attrs.create('flag_values', data=attr)

    # --- close files
    h5f_out.close()
    h5f_expl.close()


def run_mean_std(check_cloudy=False, no_icing_to_icing_ratio=5):
    ds_list = ['cld_height_acha', 'cld_geo_thick', 'cld_press_acha',
               'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_opd_acha',
               'cld_reff_acha', 'cld_reff_dcomp', 'cld_reff_dcomp_1', 'cld_reff_dcomp_2', 'cld_reff_dcomp_3',
               'cld_opd_dcomp', 'cld_opd_dcomp_1', 'cld_opd_dcomp_2', 'cld_opd_dcomp_3', 'cld_cwp_dcomp', 'iwc_dcomp',
               'lwc_dcomp', 'cld_emiss_acha', 'conv_cloud_fraction']

    mean_std_dct = {}

    ice_flist = [f for f in glob.glob('/data/Personal/rink/icing2/icing_2*.h5')]
    no_ice_flist = [f for f in glob.glob('/data/Personal/rink/icing2/no_icing_2*.h5')]

    ice_h5f_lst = [h5py.File(f, 'r') for f in ice_flist]
    no_ice_h5f_lst = [h5py.File(f, 'r') for f in no_ice_flist]

    if check_cloudy:
        cld_msk_i = []
        cld_msk_ni = []
        for idx, ice_h5f in enumerate(ice_h5f_lst):
            no_ice_h5f = no_ice_h5f_lst[idx]
            cld_msk_i.append(ice_h5f['cloud_mask'][:,].flatten())
            cld_msk_ni.append(no_ice_h5f['cloud_mask'][:,].flatten())
        cld_msk_i = np.concatenate(cld_msk_i)
        cld_msk_ni = np.concatenate(cld_msk_ni)

    for dname in ds_list:
        data = []
        data_i = []
        data_ni = []
        for idx, ice_h5f in enumerate(ice_h5f_lst):
            no_ice_h5f = no_ice_h5f_lst[idx]
            data.append(ice_h5f[dname][:,].flatten())
            data.append(no_ice_h5f[dname][:,].flatten())

            data_i.append(ice_h5f[dname][:,].flatten())
            data_ni.append(no_ice_h5f[dname][:,].flatten())

        data = np.concatenate(data)
        mean = np.nanmean(data)
        data -= mean
        std = np.nanstd(data)

        data_i = np.concatenate(data_i)
        if check_cloudy:
            keep = np.logical_or(cld_msk_i == 2, cld_msk_i == 3)
            data_i = data_i[keep]
        mean_i = np.nanmean(data_i)
        data_i -= mean_i
        std_i = np.nanstd(data_i)

        data_ni = np.concatenate(data_ni)
        if check_cloudy:
            keep = np.logical_or(cld_msk_ni == 2, cld_msk_ni == 3)
            data_ni = data_ni[keep]
        mean_ni = np.nanmean(data_ni)
        data_ni -= mean_ni
        std_ni = np.nanstd(data_ni)

        mean = (mean_i + no_icing_to_icing_ratio*mean_ni)/(no_icing_to_icing_ratio + 1)
        std = (std_i + no_icing_to_icing_ratio*std_ni)/(no_icing_to_icing_ratio + 1)

        print(dname,': (', mean, mean_i, mean_ni, ') (', std, std_i, std_ni, ')')

        mean_std_dct[dname] = (mean_ni, std_ni)

    [h5f.close() for h5f in ice_h5f_lst]
    [h5f.close() for h5f in no_ice_h5f_lst]

    f = open('/home/rink/data/icing_ml/mean_std.pkl', 'wb')
    pickle.dump(mean_std_dct, f)
    f.close()

    return mean_std_dct


def run_mean_std_2(check_cloudy=False, no_icing_to_icing_ratio=5, params=train_params_day):
    params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha',
            'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp']

    mean_std_dct = {}

    flist = [f for f in glob.glob('/Users/tomrink/data/icing/fov*.h5')]

    h5f_lst = [h5py.File(f, 'r') for f in flist]

    if check_cloudy:
        cld_msk = []
        for idx, h5f in enumerate(h5f_lst):
            cld_msk.append(h5f['cloud_mask'][:,].flatten())
        cld_msk = np.concatenate(cld_msk)

    for dname in params:
        data = []
        for idx, h5f in enumerate(h5f_lst):
            data.append(h5f[dname][:,].flatten())

        data = np.concatenate(data)

        if check_cloudy:
            keep = np.logical_or(cld_msk == 2, cld_msk == 3)
            data = data[keep]

        mean = np.nanmean(data)
        data -= mean
        std = np.nanstd(data)

        print(dname,': ', mean, std)

        mean_std_dct[dname] = (mean, std)

    [h5f.close() for h5f in h5f_lst]

    f = open('/Users/tomrink/data/icing/fovs_mean_std_day.pkl', 'wb')
    pickle.dump(mean_std_dct, f)
    f.close()

    # return mean_std_dct


def split_data(num_obs, perc=0.2, skip=1, shuffle=True, seed=None):
    idxs = np.arange(num_obs)
    idxs = list(idxs)

    num_test = int(num_obs * perc)

    test_idxs = idxs[::int(num_obs / num_test)]

    test_set = set(test_idxs)
    train_set = (set(idxs)).difference(test_set)
    train_idxs = list(train_set)

    test_idxs = np.array(test_idxs)
    train_idxs = np.array(train_idxs)

    if seed is not None:
        np.random.seed(seed)

    if shuffle:
        np.random.shuffle(test_idxs)
        np.random.shuffle(train_idxs)

    return train_idxs[::skip], test_idxs[::skip]


def normalize(data, param, mean_std_dict):

    if mean_std_dict.get(param) is None:
        return data

    shape = data.shape
    data = data.flatten()

    mean, std = mean_std_dict.get(param)
    data -= mean
    data /= std

    not_valid = np.isnan(data)
    data[not_valid] = 0

    data = np.reshape(data, shape)

    return data


def test(filename, skip=1):
    h5f = h5py.File(filename, 'r')
    time = h5f['time']
    intsty = h5f['icing_intensity']

    trn_idxs, tst_idxs = split_data(time.shape[0], skip=skip)

    print(np.histogram(intsty[trn_idxs], bins=7))
    print(np.histogram(intsty[tst_idxs], bins=7))