import numpy as np from scipy.interpolate import RegularGridInterpolator, griddata from cartopy.crs import LambertAzimuthalEqualArea import cartopy.crs as ccrs from netCDF4 import Dataset import xarray as xr # resample methods: linear = 'linear' cubic = 'cubic' nearest = 'nearest' def fill_missing(fld_a, fld_b, mask): min_val = min(np.nanmin(fld_a), np.nanmin(fld_b)) max_val = max(np.nanmax(fld_a), np.nanmax(fld_b)) random_values_a = np.random.uniform(min_val, max_val, size=fld_a.shape) random_values_b = np.random.uniform(min_val, max_val, size=fld_a.shape) fld_a[mask] = random_values_a[mask] fld_b[mask] = random_values_b[mask] def get_projection(cartopy_map_name, cen_lat, cen_lon): if cartopy_map_name == "LambertAzimuthalEqualArea": projection = ccrs.LambertAzimuthalEqualArea( central_longitude=cen_lon, central_latitude=cen_lat ) elif cartopy_map_name == "AlbersEqualArea": projection = ccrs.AlbersEqualArea( central_longitude=cen_lon, central_latitude=cen_lat ) elif cartopy_map_name == "Sinusoidal": projection = ccrs.Sinusoidal(central_longitude=cen_lon) else: raise ValueError("Projection: " + cartopy_map_name + " is not supported") return projection def resample_reg_grid(scalar_field, y, x, y_s, x_s, method='linear'): intrp = RegularGridInterpolator((y, x), scalar_field, method=method, bounds_error=False) xg, yg = np.meshgrid(x_s, y_s, indexing='xy') yg, xg = yg.flatten(), xg.flatten() pts = np.array([yg, xg]) t_pts = np.transpose(pts) return np.reshape(intrp(t_pts), (y_s.shape[0], x_s.shape[0])) def resample(scalar_field, y_d, x_d, y_t, x_t, method='linear'): # 2D target locations shape t_shape = y_t.shape # reproject scalar fields fld_repro = griddata((y_d.flatten(), x_d.flatten()), scalar_field.flatten(),(y_t.flatten(), x_t.flatten()), method=method) fld_repro = fld_repro.reshape(t_shape) return fld_repro def reproject(fld_2d, lat_2d, lon_2d, proj, target_grid=None, grid_spacing=15000, method=linear): """ :param fld_2d: the 2D scalar field to reproject :param lat_2d: 2D latitude of the scalar field domain :param lon_2d: 2D longitude of the scalar field domain :param proj: the map projection (Cartopy). Default: LambertAzimuthalEqualArea :param region_grid: the larger region grid that we pull the target grid from :param target_grid: the resampling target (y_map, x_map) where y_map and x_map are 2D. If None, the grid is created automatically. The target grid is always returned. :param grid_spacing: distance between the target grid points (in meters) :param method: resampling method: 'linear', 'nearest', 'cubic' :return: reprojected 2D scalar field, the target grid (will be 2D if rotate=True) """ data_xy = proj.transform_points(ccrs.PlateCarree(), lon_2d, lat_2d)[..., :2] # Generate a regular 2d grid extending the min and max of the xy dimensions with grid_spacing if target_grid is None: x_min, y_min = np.amin(data_xy, axis=(0, 1)) x_max, y_max = np.amax(data_xy, axis=(0, 1)) x_map = np.arange(x_min, x_max, grid_spacing) y_map = np.arange(y_min, y_max, grid_spacing) x_map_2d, y_map_2d = np.meshgrid(x_map, y_map) else: y_map_2d, x_map_2d = target_grid fld_reproj = resample(fld_2d, data_xy[..., 1], data_xy[..., 0], y_map_2d, x_map_2d, method=method) return fld_reproj, (y_map_2d, x_map_2d) def bisect_great_circle(lon_a, lat_a, lon_b, lat_b): lon_a = np.radians(lon_a) lat_a = np.radians(lat_a) lon_b = np.radians(lon_b) lat_b = np.radians(lat_b) dlon = lon_b - lon_a Bx = np.cos(lat_b) * np.cos(dlon) By = np.cos(lat_b) * np.sin(dlon) lat_c = np.arctan2(np.sin(lat_a) + np.sin(lat_b), np.sqrt((np.cos(lat_a) + Bx) ** 2 + By ** 2)) lon_c = lon_a + np.arctan2(By, np.cos(lat_a) + Bx) lon_c = np.degrees(lon_c) lat_c = np.degrees(lat_c) return lon_c, lat_c