import re import datetime from datetime import timezone import numpy as np import xarray as xr import pandas as pd import rasterio from PIL import Image import matplotlib.pyplot as plt import matplotlib.image as mpimg import h5py from util.util import get_grid_values_all from util.gfs_reader import * from util.geos_nav import GEOSNavigation from aeolus.datasource import GFSfiles import cartopy.crs as ccrs from metpy.calc import shearing_deformation, static_stability, wind_speed, first_derivative from metpy.units import units gfs_files = GFSfiles('/Users/tomrink/data/contrail/gfs/') # GEOSNavigation needs to be updated to support GOES-18 # geos_nav = GEOSNavigation() def load_image(image_path): # Extract date time string from image path datetime_regex = '_\\d{8}_\\d{6}' datetime_string = re.search(datetime_regex, image_path) if datetime_string: datetime_string = datetime_string.group() dto = datetime.datetime.strptime(datetime_string, '_%Y%m%d_%H%M%S').replace(tzinfo=timezone.utc) ts = dto.timestamp() img = mpimg.imread(image_path) return img, ts def get_contrail_mask_image(image, thresh=0.157): image = np.where(image > thresh,1, 0) return image def extract(mask_image, image_ts, clavrx_path): gfs_file, _, _ = gfs_files.get_file(image_ts) xr_dataset = xr.open_dataset(gfs_file) clvrx_h5f = h5py.File(clavrx_path, 'r') cloud_top_press = get_grid_values_all(clvrx_h5f, 'cld_press_acha').flatten() clvrx_lons = get_grid_values_all(clvrx_h5f, 'longitude').flatten() clvrx_lats = get_grid_values_all(clvrx_h5f, 'latitude').flatten() contrail_idxs = (mask_image == 1).flatten() # Assuming GOES FD for now ------------------- # elems, lines = np.meshgrid(np.arange(5424), np.arange(5424)) # lines, elems = lines.flatten(), elems.flatten() # See note above regarding support for GOES-18 # contrail_lines, contrail_elems = lines[contrail_idxs], elems[contrail_idxs] # contrail_lons, contrail_lats = geos_nav.lc_to_earth(contrail_elems, contrail_lines) contrail_press = cloud_top_press[contrail_idxs] contrail_lons, contrail_lats = clvrx_lons[contrail_idxs], clvrx_lats[contrail_idxs] keep = np.invert(np.isnan(contrail_press)) contrail_press = contrail_press[keep] contrail_lons = contrail_lons[keep] contrail_lats = contrail_lats[keep] # Indexes of contrail_press for individual bins bins = np.arange(100, 1000, 50) binned_indexes = np.digitize(contrail_press, bins) # Store the indexes in a dictionary where the key is the bin number and value is the list of indexes bins_dict = {} for bin_num in np.unique(binned_indexes): bins_dict[bin_num] = np.where(binned_indexes == bin_num)[0] # # This does point by point computation of model parameters for each contrail pixel # voxel_dict = {key: [] for key in bins_dict.keys()} # for key in bins_dict.keys(): # print('working on pressure level: ', bins[key]) # for c_idx in bins_dict[key]: # lon = contrail_lons[c_idx] # lat = contrail_lats[c_idx] # press = contrail_press[c_idx] # # wind_3d = get_voxel_s(xr_dataset, ['u-wind','v-wind'], lon, lat, press) # if wind_3d is not None: # voxel_dict[key].append(wind_3d) # ------------------------------------------------------------------------------------ # This section will compute model parameters in bulk for the region then pull for each contrail pixel lon_range = [np.min(contrail_lons), np.max(contrail_lons)] lat_range = [np.min(contrail_lats), np.max(contrail_lats)] uwind_3d = get_volume(xr_dataset, 'u-wind', 'm s-1', lon_range=lon_range, lat_range=lat_range) vwind_3d = get_volume(xr_dataset, 'v-wind', 'm s-1', lon_range=lon_range, lat_range=lat_range) temp_3d = get_volume(xr_dataset, 'temperature', 'degK', lon_range=lon_range, lat_range=lat_range) rh_3d = get_volume(xr_dataset, 'rh', '%', lon_range=lon_range, lat_range=lat_range) uwind_3d = uwind_3d.transpose('Pressure', 'Latitude', 'Longitude') vwind_3d = vwind_3d.transpose('Pressure', 'Latitude', 'Longitude') temp_3d = temp_3d.transpose('Pressure', 'Latitude', 'Longitude') rh_3d = rh_3d.transpose('Pressure', 'Latitude', 'Longitude') horz_shear_3d = shearing_deformation(uwind_3d, vwind_3d) static_3d = static_stability(temp_3d.coords['Pressure'] * units.hPa, temp_3d) horz_wind_spd_3d = wind_speed(uwind_3d, vwind_3d) # This one's a bit more work: `first_derivative` only returns a ndarray with no units, so we use the # helper function to create a DataArray and add units via metpy's pint support vert_shear_3d = first_derivative(horz_wind_spd_3d, axis=0, x=temp_3d.coords['Pressure']) vert_shear_3d = volume_np_to_xr(vert_shear_3d, ['Pressure', 'Latitude', 'Longitude'], lon_range=lon_range, lat_range=lat_range) vert_shear_3d = vert_shear_3d / units.hPa voxel_dict = {key: [] for key in bins_dict.keys()} for key in bins_dict.keys(): print('working on pressure level: ', bins[key]) for c_idx in bins_dict[key]: press = contrail_press[c_idx] lat = contrail_lats[c_idx] lon = contrail_lons[c_idx] if lon < 0: # Match GFS convention lon += 360.0 horz_shear_value = horz_shear_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest') static_value = static_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest') horz_wind_spd_value = horz_wind_spd_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest') vert_shear_value = vert_shear_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest') # tmp = horz_shear_3d.sel(Pressure=press, method='nearest') # tmp = tmp.sel(Longitude=lon, Latitude=lat, method='nearest') voxel_dict[key].append((press, lat, lon, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value)) # Create pandas DataFrame for each list of tuples in voxel_dict voxel_dict_df = {} for k, v in voxel_dict.items(): df = pd.DataFrame(v, columns=["pressure", "lat", "lon", "horz_wind_shear", "static_stability", "horz_wind_speed", "vert_wind_shear"]) voxel_dict_df[k] = df xr_dataset.close()