import re
import datetime
from datetime import timezone

import numpy as np
import xarray as xr
import pandas as pd
import rasterio
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import h5py
from util.util import get_grid_values_all
from util.gfs_reader import *
from util.geos_nav import GEOSNavigation
from aeolus.datasource import GFSfiles
import cartopy.crs as ccrs
from metpy.calc import shearing_deformation, static_stability, wind_speed, first_derivative
from metpy.units import units

gfs_files = GFSfiles('/Users/tomrink/data/contrail/gfs/')
# GEOSNavigation needs to be updated to support GOES-18
# geos_nav = GEOSNavigation()


def load_image(image_path):
    # Extract date time string from image path
    datetime_regex = '_\\d{8}_\\d{6}'
    datetime_string = re.search(datetime_regex, image_path)
    if datetime_string:
        datetime_string = datetime_string.group()
    dto = datetime.datetime.strptime(datetime_string, '_%Y%m%d_%H%M%S').replace(tzinfo=timezone.utc)
    ts = dto.timestamp()

    img = mpimg.imread(image_path)

    return img, ts


def get_contrail_mask_image(image, thresh=0.157):
    image = np.where(image > thresh,1, 0)
    return image


def extract(mask_image, image_ts, clavrx_path):
    gfs_file, _, _ = gfs_files.get_file(image_ts)
    xr_dataset = xr.open_dataset(gfs_file)

    clvrx_h5f = h5py.File(clavrx_path, 'r')
    cloud_top_press = get_grid_values_all(clvrx_h5f, 'cld_press_acha').flatten()
    clvrx_lons = get_grid_values_all(clvrx_h5f, 'longitude').flatten()
    clvrx_lats = get_grid_values_all(clvrx_h5f, 'latitude').flatten()

    contrail_idxs = (mask_image == 1).flatten()

    # Assuming GOES FD for now -------------------
    # elems, lines = np.meshgrid(np.arange(5424), np.arange(5424))
    # lines, elems = lines.flatten(), elems.flatten()
    # See note above regarding support for GOES-18
    # contrail_lines, contrail_elems = lines[contrail_idxs], elems[contrail_idxs]
    # contrail_lons, contrail_lats = geos_nav.lc_to_earth(contrail_elems, contrail_lines)

    contrail_press = cloud_top_press[contrail_idxs]
    contrail_lons, contrail_lats = clvrx_lons[contrail_idxs], clvrx_lats[contrail_idxs]

    keep = np.invert(np.isnan(contrail_press))
    contrail_press = contrail_press[keep]
    contrail_lons = contrail_lons[keep]
    contrail_lats = contrail_lats[keep]

    # Indexes of contrail_press for individual bins
    bins = np.arange(100, 1000, 50)
    binned_indexes = np.digitize(contrail_press, bins)

    # Store the indexes in a dictionary where the key is the bin number and value is the list of indexes
    bins_dict = {}
    for bin_num in np.unique(binned_indexes):
        bins_dict[bin_num] = np.where(binned_indexes == bin_num)[0]

    # # This does point by point computation of model parameters for each contrail pixel
    # voxel_dict = {key: [] for key in bins_dict.keys()}
    # for key in bins_dict.keys():
    #     print('working on pressure level: ', bins[key])
    #     for c_idx in bins_dict[key]:
    #         lon = contrail_lons[c_idx]
    #         lat = contrail_lats[c_idx]
    #         press = contrail_press[c_idx]
    #
    #         wind_3d = get_voxel_s(xr_dataset, ['u-wind','v-wind'], lon, lat, press)
    #         if wind_3d is not None:
    #             voxel_dict[key].append(wind_3d)
    # ------------------------------------------------------------------------------------

    # This section will compute model parameters in bulk for the region then pull for each contrail pixel
    lon_range = [np.min(contrail_lons), np.max(contrail_lons)]
    lat_range = [np.min(contrail_lats), np.max(contrail_lats)]

    uwind_3d = get_volume(xr_dataset, 'u-wind', 'm s-1', lon_range=lon_range, lat_range=lat_range)
    vwind_3d = get_volume(xr_dataset, 'v-wind', 'm s-1', lon_range=lon_range, lat_range=lat_range)
    temp_3d = get_volume(xr_dataset, 'temperature', 'degK', lon_range=lon_range, lat_range=lat_range)
    rh_3d = get_volume(xr_dataset, 'rh', '%', lon_range=lon_range, lat_range=lat_range)

    uwind_3d = uwind_3d.transpose('Pressure', 'Latitude', 'Longitude')
    vwind_3d = vwind_3d.transpose('Pressure', 'Latitude', 'Longitude')
    temp_3d = temp_3d.transpose('Pressure', 'Latitude', 'Longitude')
    rh_3d = rh_3d.transpose('Pressure', 'Latitude', 'Longitude')

    horz_shear_3d = shearing_deformation(uwind_3d, vwind_3d)
    static_3d = static_stability(temp_3d.coords['Pressure'] * units.hPa, temp_3d)
    horz_wind_spd_3d = wind_speed(uwind_3d, vwind_3d)

    # This one's a bit more work: `first_derivative` only returns a ndarray with no units, so we use the
    # helper function to create a DataArray and add units via metpy's pint support
    vert_shear_3d = first_derivative(horz_wind_spd_3d, axis=0, x=temp_3d.coords['Pressure'])
    vert_shear_3d = volume_np_to_xr(vert_shear_3d, ['Pressure', 'Latitude', 'Longitude'], lon_range=lon_range, lat_range=lat_range)
    vert_shear_3d = vert_shear_3d / units.hPa

    voxel_dict = {key: [] for key in bins_dict.keys()}
    for key in bins_dict.keys():
        print('working on pressure level: ', bins[key])
        for c_idx in bins_dict[key]:
            press = contrail_press[c_idx]
            lat = contrail_lats[c_idx]
            lon = contrail_lons[c_idx]
            if lon < 0:  # Match GFS convention
                lon += 360.0

            horz_shear_value = horz_shear_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest')
            static_value = static_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest')
            horz_wind_spd_value = horz_wind_spd_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest')
            vert_shear_value = vert_shear_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest')

            # tmp = horz_shear_3d.sel(Pressure=press, method='nearest')
            # tmp = tmp.sel(Longitude=lon, Latitude=lat, method='nearest')

            voxel_dict[key].append((press, lat, lon, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value))

    # Create pandas DataFrame for each list of tuples in voxel_dict
    voxel_dict_df = {}
    for k, v in voxel_dict.items():
        df = pd.DataFrame(v, columns=["pressure", "lat", "lon", "horz_wind_shear", "static_stability", "horz_wind_speed", "vert_wind_shear"])
        voxel_dict_df[k] = df

    xr_dataset.close()