import tensorflow as tf import tensorflow_addons as tfa from util.setup import logdir, modeldir, cachepath from util.util import homedir import os, datetime import numpy as np import pickle import h5py from icing.pirep_goes import split_data, normalize from util.plot_cm import plot_confusion_matrix LOG_DEVICE_PLACEMENT = False CACHE_DATA_IN_MEM = False PROC_BATCH_SIZE = 4096 PROC_BATCH_BUFFER_SIZE = 50000 NumClasses = 2 NumLogits = 1 BATCH_SIZE = 256 NUM_EPOCHS = 200 TRACK_MOVING_AVERAGE = False TRIPLET = False CONV3D = False img_width = 16 mean_std_file = homedir+'data/icing/mean_std_l1b_no_ice.pkl' f = open(mean_std_file, 'rb') mean_std_dct = pickle.load(f) f.close() # train_params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha', # 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp'] # #'cloud_phase'] train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True): with tf.name_scope(block_name): if doDropout: fc = tf.keras.layers.Dropout(drop_rate)(input) fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) else: fc = tf.keras.layers.Dense(num_neurons, activation=activation)(input) if doBatchNorm: fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) fc_skip = fc if doDropout: fc = tf.keras.layers.Dropout(drop_rate)(fc) fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) if doBatchNorm: fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) if doDropout: fc = tf.keras.layers.Dropout(drop_rate)(fc) fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) if doBatchNorm: fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) if doDropout: fc = tf.keras.layers.Dropout(drop_rate)(fc) fc = tf.keras.layers.Dense(num_neurons, activation=None)(fc) if doBatchNorm: fc = tf.keras.layers.BatchNormalization()(fc) fc = fc + fc_skip fc = tf.keras.layers.LeakyReLU()(fc) print(fc.shape) return fc class IcingIntensityNN: def __init__(self, gpu_device=0, datapath=None): self.train_data = None self.train_label = None self.test_data = None self.test_label = None self.test_data_denorm = None self.train_dataset = None self.inner_train_dataset = None self.test_dataset = None self.X_img = None self.X_prof = None self.X_u = None self.X_v = None self.X_sfc = None self.inputs = [] self.y = None self.handle = None self.inner_handle = None self.in_mem_batch = None self.filename_trn = None self.h5f_trn = None self.filename_tst = None self.h5f_tst = None self.h5f_l1b = None self.logits = None self.predict_data = None self.predict_dataset = None self.mean_list = None self.std_list = None self.training_op = None self.correct = None self.accuracy = None self.loss = None self.pred_class = None self.gpu_device = gpu_device self.variable_averages = None self.global_step = None self.writer_train = None self.writer_valid = None self.OUT_OF_RANGE = False self.abi = None self.temp = None self.wv = None self.lbfp = None self.sfc = None self.in_mem_data_cache = {} self.model = None self.optimizer = None self.train_loss = None self.train_accuracy = None self.test_loss = None self.test_accuracy = None self.test_auc = None self.test_recall = None self.test_precision = None self.test_confusion_matrix = None self.test_labels = [] self.test_preds = [] self.learningRateSchedule = None self.num_data_samples = None self.initial_learning_rate = None n_chans = len(train_params) if TRIPLET: n_chans *= 3 self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans)) self.inputs.append(self.X_img) self.DISK_CACHE = False if datapath is not None: self.DISK_CACHE = False f = open(datapath, 'rb') self.in_mem_data_cache = pickle.load(f) f.close() tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: # Currently, memory growth needs to be the same across GPUs for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: # Memory growth must be set before GPUs have been initialized print(e) def get_in_mem_data_batch(self, idxs, is_training): h5f = self.h5f_trn if not is_training: h5f = self.h5f_tst key = frozenset(idxs) if CACHE_DATA_IN_MEM: tup = self.in_mem_data_cache.get(key) if tup is not None: return tup[0], tup[1] # sort these to use as numpy indexing arrays nd_idxs = np.array(idxs) nd_idxs = np.sort(nd_idxs) data = [] for param in train_params: nda = h5f[param][nd_idxs, ] nda = normalize(nda, param, mean_std_dct) data.append(nda) data = np.stack(data) data = data.astype(np.float32) data = np.transpose(data, axes=(1, 2, 3, 0)) label = h5f['icing_intensity'][nd_idxs] label = label.astype(np.int32) label = np.where(label == -1, 0, label) # binary, two class if NumClasses == 2: label = np.where(label != 0, 1, label) label = label.reshape((label.shape[0], 1)) elif NumClasses == 3: label = np.where(np.logical_or(label == 1, label == 2), 1, label) label = np.where(np.invert(np.logical_or(label == 0, label == 1)), 2, label) label = label.reshape((label.shape[0], 1)) if CACHE_DATA_IN_MEM: self.in_mem_data_cache[key] = (data, label) return data, label def get_in_mem_data_batch_train(self, idxs): return self.get_in_mem_data_batch(idxs, True) def get_in_mem_data_batch_test(self, idxs): return self.get_in_mem_data_batch(idxs, False) @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.int32]) return out @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function_test(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.int32]) return out def get_train_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) dataset = dataset.cache() # dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset def get_test_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function_test, num_parallel_calls=8) dataset = dataset.cache() self.test_dataset = dataset def setup_pipeline(self, filename_trn, filename_tst, trn_idxs=None, tst_idxs=None, seed=None): self.filename_trn = filename_trn self.h5f_trn = h5py.File(filename_trn, 'r') self.filename_tst = filename_tst self.h5f_tst = h5py.File(filename_tst, 'r') if trn_idxs is None: time = self.h5f_trn['time'] trn_idxs = np.arange(time.shape[0]) if seed is not None: np.random.seed(seed) np.random.shuffle(trn_idxs) time = self.h5f_tst['time'] tst_idxs = np.arange(time.shape[0]) if seed is not None: np.random.seed(seed) np.random.shuffle(tst_idxs) self.num_data_samples = trn_idxs.shape[0] self.get_train_dataset(trn_idxs) self.get_test_dataset(tst_idxs) print('num train samples: ', self.num_data_samples) print('BATCH SIZE: ', BATCH_SIZE) print('num test samples: ', tst_idxs.shape[0]) print('setup_pipeline: Done') def build_1d_cnn(self): print('build_1d_cnn') # padding = 'VALID' padding = 'SAME' # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.leaky_relu num_filters = 6 conv = tf.keras.layers.Conv1D(num_filters, 5, strides=1, padding=padding)(self.inputs[1]) conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) print(conv) num_filters *= 2 conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) print(conv) num_filters *= 2 conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) print(conv) num_filters *= 2 conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) print(conv) flat = tf.keras.layers.Flatten()(conv) print(flat) return flat def build_cnn(self): print('build_cnn') # padding = "VALID" padding = "SAME" # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.leaky_relu momentum = 0.99 num_filters = 8 conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(self.inputs[0]) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) num_filters *= 2 conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) num_filters *= 2 conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) num_filters *= 2 conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) # num_filters *= 2 # conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) # conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) # conv = tf.keras.layers.BatchNormalization()(conv) # print(conv.shape) flat = tf.keras.layers.Flatten()(conv) return flat def build_dnn(self, input_layer=None): print('build fully connected layer') drop_rate = 0.5 # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.leaky_relu momentum = 0.99 if input_layer is not None: flat = input_layer n_hidden = input_layer.shape[1] else: flat = self.X_img n_hidden = self.X_img.shape[1] fac = 2 fc = build_residual_block(flat, drop_rate, fac*n_hidden, activation, 'Residual_Block_1', doBatchNorm=True) fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2', doBatchNorm=True) fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3', doBatchNorm=True) fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4', doBatchNorm=True) fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5', doBatchNorm=True) fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_6', doBatchNorm=True) # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_7', doBatchNorm=True) # # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_8', doBatchNorm=True) fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc) fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) if NumClasses == 2: activation = tf.nn.sigmoid # For binary else: activation = tf.nn.softmax # For multi-class # Called logits, but these are actually probabilities, see activation logits = tf.keras.layers.Dense(NumLogits, activation=activation)(fc) print(logits.shape) self.logits = logits def build_training(self): if NumClasses == 2: self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only else: self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) initial_learning_rate = 0.002 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch # decay_steps = int(steps_per_epoch / 2) decay_steps = 8 * steps_per_epoch print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) optimizer = tfa.optimizers.MovingAverage(optimizer) if TRACK_MOVING_AVERAGE: ema = tf.train.ExponentialMovingAverage(decay=0.999) with tf.control_dependencies([optimizer]): optimizer = ema.apply(self.model.trainable_variables) self.optimizer = optimizer self.initial_learning_rate = initial_learning_rate def build_evaluation(self): self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss') if NumClasses == 2: self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy') self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy') self.test_auc = tf.keras.metrics.AUC(name='test_auc') self.test_recall = tf.keras.metrics.Recall(name='test_recall') self.test_precision = tf.keras.metrics.Precision(name='test_precision') else: self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') self.test_auc = tf.keras.metrics.AUC(name='test_auc') self.test_recall = tf.keras.metrics.Recall(name='test_recall') self.test_precision = tf.keras.metrics.Precision(name='test_precision') def build_predict(self): _, pred = tf.nn.top_k(self.logits) self.pred_class = pred if TRACK_MOVING_AVERAGE: self.variable_averages = tf.train.ExponentialMovingAverage(0.999, self.global_step) self.variable_averages.apply(self.model.trainable_variables) @tf.function def train_step(self, mini_batch): inputs = [mini_batch[0]] labels = mini_batch[1] with tf.GradientTape() as tape: pred = self.model(inputs, training=True) loss = self.loss(labels, pred) total_loss = loss if len(self.model.losses) > 0: reg_loss = tf.math.add_n(self.model.losses) total_loss = loss + reg_loss gradients = tape.gradient(total_loss, self.model.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) self.train_loss(loss) self.train_accuracy(labels, pred) return loss @tf.function def test_step(self, mini_batch): inputs = [mini_batch[0]] labels = mini_batch[1] pred = self.model(inputs, training=False) t_loss = self.loss(labels, pred) self.test_loss(t_loss) self.test_accuracy(labels, pred) if NumClasses == 2: self.test_auc(labels, pred) self.test_recall(labels, pred) self.test_precision(labels, pred) def predict(self, mini_batch): inputs = [mini_batch[0]] labels = mini_batch[1] pred = self.model(inputs, training=False) t_loss = self.loss(labels, pred) self.test_labels.append(labels) self.test_preds.append(pred.numpy()) self.test_loss(t_loss) self.test_accuracy(labels, pred) self.test_auc(labels, pred) self.test_recall(labels, pred) self.test_precision(labels, pred) def do_training(self, ckpt_dir=None): if ckpt_dir is None: if not os.path.exists(modeldir): os.mkdir(modeldir) ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) else: ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) step = 0 total_time = 0 for epoch in range(NUM_EPOCHS): self.train_loss.reset_states() self.train_accuracy.reset_states() t0 = datetime.datetime.now().timestamp() proc_batch_cnt = 0 n_samples = 0 for data0, label in self.train_dataset: trn_ds = tf.data.Dataset.from_tensor_slices((data0, label)) trn_ds = trn_ds.batch(BATCH_SIZE) for mini_batch in trn_ds: if self.learningRateSchedule is not None: loss = self.train_step(mini_batch) if (step % 100) == 0: with self.writer_train.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_epochs', epoch, step=step) self.test_loss.reset_states() self.test_accuracy.reset_states() for data0_tst, label_tst in self.test_dataset: tst_ds = tf.data.Dataset.from_tensor_slices((data0_tst, label_tst)) tst_ds = tst_ds.batch(BATCH_SIZE) for mini_batch_test in tst_ds: self.test_step(mini_batch_test) with self.writer_valid.as_default(): tf.summary.scalar('loss_val', self.test_loss.result(), step=step) tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) tf.summary.scalar('auc_val', self.test_auc.result(), step=step) tf.summary.scalar('recall_val', self.test_recall.result(), step=step) tf.summary.scalar('prec_val', self.test_precision.result(), step=step) tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_epochs', epoch, step=step) print('****** test loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) step += 1 print('train loss: ', loss.numpy()) proc_batch_cnt += 1 n_samples += data0.shape[0] print('proc_batch_cnt: ', proc_batch_cnt, n_samples) t1 = datetime.datetime.now().timestamp() print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) total_time += (t1-t0) self.test_loss.reset_states() self.test_accuracy.reset_states() self.test_auc.reset_states() self.test_recall.reset_states() self.test_precision.reset_states() for data0, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data0, label)) ds = ds.batch(BATCH_SIZE) for mini_batch in ds: self.test_step(mini_batch) print('loss, acc, auc, recall, precision: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.test_auc.result().numpy(), self.test_recall.result().numpy(), self.test_precision.result().numpy()) print('--------------------------------------------------') ckpt_manager.save() if self.DISK_CACHE and epoch == 0: f = open(cachepath, 'wb') pickle.dump(self.in_mem_data_cache, f) f.close() print('total time: ', total_time) self.writer_train.close() self.writer_valid.close() self.h5f_trn.close() self.h5f_tst.close() def build_model(self): flat = self.build_cnn() # flat_1d = self.build_1d_cnn() # flat = tf.keras.layers.concatenate([flat, flat_1d, flat_anc]) # flat = tf.keras.layers.concatenate([flat, flat_1d]) # self.build_dnn(flat) self.build_dnn(flat) self.model = tf.keras.Model(self.inputs, self.logits) def restore(self, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.test_loss.reset_states() self.test_accuracy.reset_states() for data0, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data0, label)) ds = ds.batch(BATCH_SIZE) for mini_batch_test in ds: self.predict(mini_batch_test) print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result()) labels = np.concatenate(self.test_labels) preds = np.concatenate(self.test_preds) preds = np.where(preds > 0.5, 1, 0) self.test_labels = labels self.test_preds = preds def run(self, filename_trn, filename_tst, filename_l1b=None): with tf.device('/device:GPU:'+str(self.gpu_device)): self.setup_pipeline(filename_trn, filename_tst) self.build_model() self.build_training() self.build_evaluation() self.do_training() def run_restore(self, filename, ckpt_dir): self.setup_pipeline(filename) self.build_model() self.build_training() self.build_evaluation() self.restore(ckpt_dir) if __name__ == "__main__": nn = IcingIntensityNN() nn.run('matchup_filename')