import glob import tensorflow as tf from util.setup import logdir, modeldir, cachepath, now, ancillary_path from util.util import EarlyStop, normalize, denormalize, resample, resample_2d_linear, resample_one, resample_2d_linear_one, get_grid_values_all import os, datetime import numpy as np import pickle import h5py # L1B M/I-bands: /apollo/cloud/scratch/cwhite/VIIRS_HRES/2019/2019_01_01/ # CLAVRx: /apollo/cloud/scratch/Satellite_Output/VIIRS_HRES/2019/2019_01_01/ # /apollo/cloud/scratch/Satellite_Output/andi/NEW/VIIRS_HRES/2019 LOG_DEVICE_PLACEMENT = False PROC_BATCH_SIZE = 2 PROC_BATCH_BUFFER_SIZE = 50000 NumClasses = 2 if NumClasses == 2: NumLogits = 1 else: NumLogits = NumClasses BATCH_SIZE = 128 NUM_EPOCHS = 60 TRACK_MOVING_AVERAGE = False EARLY_STOP = True NOISE_TRAINING = False NOISE_STDDEV = 0.10 DO_AUGMENT = True DO_ZERO_OUT = False # setup scaling parameters dictionary mean_std_dct = {} mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl' f = open(mean_std_file, 'rb') mean_std_dct_l2 = pickle.load(f) f.close() mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl' f = open(mean_std_file, 'rb') mean_std_dct_l1b = pickle.load(f) f.close() mean_std_dct.update(mean_std_dct_l1b) mean_std_dct.update(mean_std_dct_l2) label_param = 'cloud_fraction' # label_param = 'cld_opd_dcomp' # label_param = 'cloud_probability' params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', label_param] data_params = ['temp_11_0um_nom'] label_idx = params.index(label_param) print('data_params: ', data_params) print('label_param: ', label_param) x_134 = np.arange(134) y_134 = np.arange(134) x_64 = np.arange(64) y_64 = np.arange(64) x_134_2 = x_134[3:131:2] y_134_2 = y_134[3:131:2] # x_134_2 = x_134[2:133:2] # y_134_2 = y_134[2:133:2] t = np.arange(0, 64, 0.5) s = np.arange(0, 64, 0.5) def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', kernel_initializer='he_uniform', scale=None, do_drop_out=True, drop_rate=0.5, do_batch_norm=False): with tf.name_scope(block_name): skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding, activation=None)(skip) if scale is not None: skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip) if do_drop_out: skip = tf.keras.layers.Dropout(drop_rate)(skip) if do_batch_norm: skip = tf.keras.layers.BatchNormalization()(skip) conv = conv + skip print(block_name+':', conv.shape) return conv class SRCNN: def __init__(self): self.train_data = None self.train_label = None self.test_data = None self.test_label = None self.test_data_denorm = None self.train_dataset = None self.inner_train_dataset = None self.test_dataset = None self.eval_dataset = None self.X_img = None self.X_prof = None self.X_u = None self.X_v = None self.X_sfc = None self.inputs = [] self.y = None self.handle = None self.inner_handle = None self.in_mem_batch = None self.h5f_l1b_trn = None self.h5f_l1b_tst = None self.h5f_l2_trn = None self.h5f_l2_tst = None self.logits = None self.predict_data = None self.predict_dataset = None self.mean_list = None self.std_list = None self.training_op = None self.correct = None self.accuracy = None self.loss = None self.pred_class = None self.variable_averages = None self.global_step = None self.writer_train = None self.writer_valid = None self.writer_train_valid_loss = None self.OUT_OF_RANGE = False self.abi = None self.temp = None self.wv = None self.lbfp = None self.sfc = None self.in_mem_data_cache = {} self.in_mem_data_cache_test = {} self.model = None self.optimizer = None self.ema = None self.train_loss = None self.train_accuracy = None self.test_loss = None self.test_accuracy = None self.test_auc = None self.test_recall = None self.test_precision = None self.test_confusion_matrix = None self.test_true_pos = None self.test_true_neg = None self.test_false_pos = None self.test_false_neg = None self.test_labels = [] self.test_preds = [] self.test_probs = None self.learningRateSchedule = None self.num_data_samples = None self.initial_learning_rate = None self.data_dct = None self.train_data_files = None self.train_label_files = None self.test_data_files = None self.test_label_files = None self.train_data_nda = None self.train_label_nda = None self.test_data_nda = None self.test_label_nda = None self.n_chans = len(data_params) + 2 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) # self.X_img = tf.keras.Input(shape=(34, 34, self.n_chans)) # self.X_img = tf.keras.Input(shape=(66, 66, self.n_chans)) self.inputs.append(self.X_img) tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) def get_in_mem_data_batch(self, idxs, is_training): if is_training: files = self.train_data_files else: files = self.test_data_files data_s = [] for k in idxs: f = files[k] nda = np.load(f) data_s.append(nda) input_data = np.concatenate(data_s) add_noise = None noise_scale = None if is_training: add_noise = True noise_scale = 0.005 data_norm = [] for param in data_params: idx = params.index(param) tmp = input_data[:, idx, 3:131:2, 3:131:2] tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) tmp = resample_2d_linear(x_64, y_64, tmp, t, s) data_norm.append(tmp) # -------- idx = params.index('refl_0_65um_nom') tmp = input_data[:, idx, 3:131, 3:131] tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) # tmp = input_data[:, idx, 3:131:2, 3:131:2] # tmp = resample_2d_linear(x_64, y_64, tmp, t, s) data_norm.append(tmp) # -------- tmp = input_data[:, label_idx, 3:131:2, 3:131:2] if label_param != 'cloud_fraction': tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) else: tmp = np.where(np.isnan(tmp), 0, tmp) tmp = resample_2d_linear(x_64, y_64, tmp, t, s) data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3) data = data.astype(np.float32) # label = input_data[:, label_idx, 3:131:2, 3:131:2] label = input_data[:, label_idx, 3:131, 3:131] if label_param != 'cloud_fraction': label = normalize(label, label_param, mean_std_dct) else: label = np.where(np.isnan(label), 0, label) label = np.expand_dims(label, axis=3) data = data.astype(np.float32) label = label.astype(np.float32) if is_training and DO_AUGMENT: data_ud = np.flip(data, axis=1) label_ud = np.flip(label, axis=1) data_lr = np.flip(data, axis=2) label_lr = np.flip(label, axis=2) data = np.concatenate([data, data_ud, data_lr]) label = np.concatenate([label, label_ud, label_lr]) return data, label def get_in_mem_data_batch_train(self, idxs): return self.get_in_mem_data_batch(idxs, True) def get_in_mem_data_batch_test(self, idxs): return self.get_in_mem_data_batch(idxs, False) def get_in_mem_data_batch_eval(self, idxs): data = [] for param in self.train_params: nda = self.data_dct[param] nda = normalize(nda, param, mean_std_dct) data.append(nda) data = np.stack(data) data = data.astype(np.float32) data = np.transpose(data, axes=(1, 2, 0)) data = np.expand_dims(data, axis=0) return data @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32]) return out @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function_test(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32]) return out @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function_evaluate(self, indexes): # TODO: modify for user specified altitude out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], [tf.float32]) return out def get_train_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) dataset = dataset.cache() if DO_AUGMENT: dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset def get_test_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function_test, num_parallel_calls=8) dataset = dataset.cache() self.test_dataset = dataset def get_evaluate_dataset(self, indexes): indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8) self.eval_dataset = dataset def setup_pipeline(self, train_data_files, test_data_files, num_train_samples): self.train_data_files = train_data_files self.test_data_files = test_data_files trn_idxs = np.arange(len(train_data_files)) np.random.shuffle(trn_idxs) tst_idxs = np.arange(len(test_data_files)) self.get_train_dataset(trn_idxs) self.get_test_dataset(tst_idxs) self.num_data_samples = num_train_samples # approximately print('datetime: ', now) print('training and test data: ') print('---------------------------') print('num train samples: ', self.num_data_samples) print('BATCH SIZE: ', BATCH_SIZE) print('num test samples: ', tst_idxs.shape[0]) print('setup_pipeline: Done') def setup_test_pipeline(self, test_data_files): self.test_data_files = test_data_files tst_idxs = np.arange(len(test_data_files)) self.get_test_dataset(tst_idxs) print('setup_test_pipeline: Done') def setup_eval_pipeline(self, filename): idxs = [0] self.num_data_samples = idxs.shape[0] self.get_evaluate_dataset(idxs) def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2): print('build_cnn') padding = "SAME" # activation = tf.nn.relu # activation = tf.nn.elu activation = tf.nn.relu momentum = 0.99 num_filters = 64 input_2d = self.inputs[0] print('input: ', input_2d.shape) # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d) conv = input_2d print('input: ', conv.shape) # conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d) conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, kernel_initializer='he_uniform', activation=activation, padding='SAME')(input_2d) print(conv.shape) if NOISE_TRAINING: conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv) scale = 0.2 conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale) conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, kernel_initializer='he_uniform', padding=padding)(conv_b) conv = conv + conv_b print(conv.shape) self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv) print(self.logits.shape) def build_training(self): # if NumClasses == 2: # self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only # else: # self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class # self.loss = tf.keras.losses.MeanAbsoluteError() # Regression self.loss = tf.keras.losses.MeanSquaredError() # Regression # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) initial_learning_rate = 0.002 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch decay_steps = int(steps_per_epoch) print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) if TRACK_MOVING_AVERAGE: # Not really sure this works properly (from tfa) # optimizer = tfa.optimizers.MovingAverage(optimizer) self.ema = tf.train.ExponentialMovingAverage(decay=0.9999) self.optimizer = optimizer self.initial_learning_rate = initial_learning_rate def build_evaluation(self): self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy') self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy') self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss') @tf.function def train_step(self, mini_batch): inputs = [mini_batch[0]] labels = mini_batch[1] with tf.GradientTape() as tape: pred = self.model(inputs, training=True) loss = self.loss(labels, pred) total_loss = loss if len(self.model.losses) > 0: reg_loss = tf.math.add_n(self.model.losses) total_loss = loss + reg_loss gradients = tape.gradient(total_loss, self.model.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) if TRACK_MOVING_AVERAGE: self.ema.apply(self.model.trainable_variables) self.train_loss(loss) self.train_accuracy(labels, pred) return loss @tf.function def test_step(self, mini_batch): inputs = [mini_batch[0]] labels = mini_batch[1] pred = self.model(inputs, training=False) t_loss = self.loss(labels, pred) self.test_loss(t_loss) self.test_accuracy(labels, pred) def predict(self, mini_batch): inputs = [mini_batch[0]] labels = mini_batch[1] pred = self.model(inputs, training=False) t_loss = self.loss(labels, pred) self.test_labels.append(labels) self.test_preds.append(pred.numpy()) self.test_loss(t_loss) self.test_accuracy(labels, pred) def reset_test_metrics(self): self.test_loss.reset_states() self.test_accuracy.reset_states() def get_metrics(self): recall = self.test_recall.result() precsn = self.test_precision.result() f1 = 2 * (precsn * recall) / (precsn + recall) tn = self.test_true_neg.result() tp = self.test_true_pos.result() fn = self.test_false_neg.result() fp = self.test_false_pos.result() mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) return f1, mcc def do_training(self, ckpt_dir=None): if ckpt_dir is None: if not os.path.exists(modeldir): os.mkdir(modeldir) ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) else: ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss')) step = 0 total_time = 0 best_test_loss = np.finfo(dtype=np.float).max if EARLY_STOP: es = EarlyStop() for epoch in range(NUM_EPOCHS): self.train_loss.reset_states() self.train_accuracy.reset_states() t0 = datetime.datetime.now().timestamp() proc_batch_cnt = 0 n_samples = 0 for data, label in self.train_dataset: trn_ds = tf.data.Dataset.from_tensor_slices((data, label)) trn_ds = trn_ds.batch(BATCH_SIZE) for mini_batch in trn_ds: if self.learningRateSchedule is not None: loss = self.train_step(mini_batch) if (step % 100) == 0: with self.writer_train.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step) tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_epochs', epoch, step=step) self.reset_test_metrics() for data_tst, label_tst in self.test_dataset: tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst)) tst_ds = tst_ds.batch(BATCH_SIZE) for mini_batch_test in tst_ds: self.test_step(mini_batch_test) with self.writer_valid.as_default(): tf.summary.scalar('loss_val', self.test_loss.result(), step=step) tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) with self.writer_train_valid_loss.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) tf.summary.scalar('loss_val', self.test_loss.result(), step=step) print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.optimizer._decayed_lr('float32').numpy()) step += 1 print('train loss: ', loss.numpy()) proc_batch_cnt += 1 n_samples += data.shape[0] print('proc_batch_cnt: ', proc_batch_cnt, n_samples) t1 = datetime.datetime.now().timestamp() print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) total_time += (t1-t0) self.reset_test_metrics() for data, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data, label)) ds = ds.batch(BATCH_SIZE) for mini_batch in ds: self.test_step(mini_batch) print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) print('------------------------------------------------------') tst_loss = self.test_loss.result().numpy() if tst_loss < best_test_loss: best_test_loss = tst_loss ckpt_manager.save() if EARLY_STOP and es.check_stop(tst_loss): break print('total time: ', total_time) self.writer_train.close() self.writer_valid.close() self.writer_train_valid_loss.close() # f = open(home_dir+'/best_stats_'+now+'.pkl', 'wb') # pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f) # f.close() def build_model(self): self.build_srcnn() self.model = tf.keras.Model(self.inputs, self.logits) def restore(self, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.reset_test_metrics() for data, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data, label)) ds = ds.batch(BATCH_SIZE) for mini_batch_test in ds: self.predict(mini_batch_test) print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) def do_evaluate(self, data, ckpt_dir): ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) ckpt.restore(ckpt_manager.latest_checkpoint) self.reset_test_metrics() pred = self.model([data], training=False) self.test_probs = pred pred = pred.numpy() return pred def run(self, directory, ckpt_dir=None, num_data_samples=50000): train_data_files = glob.glob(directory+'data_train_*.npy') valid_data_files = glob.glob(directory+'data_valid_*.npy') self.setup_pipeline(train_data_files, valid_data_files, num_data_samples) self.build_model() self.build_training() self.build_evaluation() self.do_training(ckpt_dir=ckpt_dir) def run_restore(self, directory, ckpt_dir): valid_data_files = glob.glob(directory + 'data_*.npy') self.num_data_samples = 1000 self.setup_test_pipeline(valid_data_files) self.build_model() self.build_training() self.build_evaluation() self.restore(ckpt_dir) def run_evaluate(self, data, ckpt_dir): self.num_data_samples = 80000 self.build_model() self.build_training() self.build_evaluation() return self.do_evaluate(data, ckpt_dir) def run_restore_static(directory, ckpt_dir): nn = SRCNN() nn.run_restore(directory, ckpt_dir) def run_evaluate_static(in_file, out_file, ckpt_dir): h5f = h5py.File(in_file, 'r') grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') grd_a = grd_a[2432:4032, 2432:4032] grd_a = grd_a[::2, ::2] grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') grd_b = grd_b[2432:4032, 2432:4032] grd_c = get_grid_values_all(h5f, label_param) grd_c = grd_c[2432:4032, 2432:4032] grd_c = grd_c[::2, ::2] leny, lenx = grd_a.shape x = np.arange(lenx) y = np.arange(leny) x_up = np.arange(0, lenx, 0.5) y_up = np.arange(0, leny, 0.5) grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) grd_a = resample_2d_linear_one(x, y, grd_a, x_up, y_up) grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) if label_param == 'cloud_fraction': grd_c = np.where(np.isnan(grd_c), 0, grd_c) else: grd_c = normalize(grd_c, label_param, mean_std_dct) grd_c = resample_2d_linear_one(x, y, grd_c, x_up, y_up) data = np.stack([grd_a, grd_b, grd_c], axis=2) data = np.expand_dims(data, axis=0) nn = SRCNN() out_sr = nn.run_evaluate(data, ckpt_dir) if label_param != 'cloud_fraction': out_sr = denormalize(out_sr, label_param, mean_std_dct) if out_file is not None: np.save(out_file, out_sr) else: return out_sr def run_evaluate_static_2(in_file, out_file, ckpt_dir): nda = np.load(in_file) grd_a = nda[:, 0, :, :] grd_a = grd_a[:, 3:131:2, 3:131:2] grd_b = nda[:, 2, 3:131, 3:131] grd_c = nda[:, 3, :, :] grd_c = grd_c[:, 3:131:2, 3:131:2] num, leny, lenx = grd_a.shape x = np.arange(lenx) y = np.arange(leny) x_up = np.arange(0, lenx, 0.5) y_up = np.arange(0, leny, 0.5) grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) grd_a = resample_2d_linear(x, y, grd_a, x_up, y_up) grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) if label_param == 'cloud_fraction': grd_c = np.where(np.isnan(grd_c), 0, grd_c) else: grd_c = normalize(grd_c, label_param, mean_std_dct) grd_c = resample_2d_linear(x, y, grd_c, x_up, y_up) data = np.stack([grd_a, grd_b, grd_c], axis=3) print(data.shape) nn = SRCNN() out_sr = nn.run_evaluate(data, ckpt_dir) if label_param != 'cloud_fraction': out_sr = denormalize(out_sr, label_param, mean_std_dct) if out_file is not None: np.save(out_file, out_sr) else: return out_sr def analyze(fpath='/Users/tomrink/clavrx_snpp_viirs.A2019080.0100.001.2019080064252.uwssec_B00038315.level2.h5', param='cloud_fraction'): h5f = h5py.File(fpath, 'r') grd = get_grid_values_all(h5f, param) grd = np.where(np.isnan(grd), 0, grd) bt = get_grid_values_all(h5f, 'temp_11_0um_nom') refl = get_grid_values_all(h5f, 'refl_0_65um_nom') grd = grd[2432:4032, 2432:4032] bt = bt[2432:4032, 2432:4032] refl = refl[2432:4032, 2432:4032] print(grd.shape) grd_lr = grd[::2, ::2] print(grd_lr.shape) leny, lenx = grd_lr.shape rnd = np.random.normal(loc=0, scale=0.001, size=grd_lr.size) grd_lr = grd_lr + rnd.reshape(grd_lr.shape) if param == 'cloud_fraction': grd_lr = np.where(grd_lr < 0, 0, grd_lr) grd_lr = np.where(grd_lr > 1, 1, grd_lr) x = np.arange(lenx) y = np.arange(leny) x_up = np.arange(0, lenx, 0.5) y_up = np.arange(0, leny, 0.5) grd_hr = resample_2d_linear_one(x, y, grd_lr, x_up, y_up) print(grd_hr.shape) h5f.close() return grd, grd_lr, grd_hr, bt, refl if __name__ == "__main__": nn = SRCNN() nn.run('matchup_filename')