from icing.pireps import pirep_icing import numpy as np import pickle import os from util.util import get_time_tuple_utc, GenericException, add_time_range_to_filename from aeolus.datasource import CLAVRx, GOESL1B from util.geos_nav import GEOSNavigation import h5py import re import datetime from datetime import timezone goes_date_format = '%Y%j%H' goes16_directory = '/arcdata/goes/grb/goes16' # /year/date/abi/L1b/RadC #clavrx_dir = '/apollo/cloud/scratch/ICING/' clavrx_dir = '/ships19/cloud/scratch/ICING/' dir_fmt = '%Y_%m_%d_%j' # dir_list = [f.path for f in os.scandir('.') if f.is_dir()] ds_dct = {} goes_ds_dct = {} #pirep_file = '/home/rink/data/pireps/pireps_2019010000_2019063023.csv' pirep_file = '/home/rink/data/pireps/pireps_20180101_20200331.csv' l1b_ds_list = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', 'refl_0_47um_nom', 'refl_0_55um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] l1b_ds_types = ['f4' for ds in l1b_ds_list] ds_list = ['cld_height_acha', 'cld_geo_thick', 'cld_press_acha', 'sensor_zenith_angle', 'supercooled_prob_acha', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_opd_acha', 'solar_zenith_angle', 'cld_reff_acha', 'cld_reff_dcomp', 'cld_reff_dcomp_1', 'cld_reff_dcomp_2', 'cld_reff_dcomp_3', 'cld_opd_dcomp', 'cld_opd_dcomp_1', 'cld_opd_dcomp_2', 'cld_opd_dcomp_3', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp', 'cloud_type', 'cloud_phase', 'cloud_mask'] ds_types = ['f4' for i in range(21)] + ['i4' for i in range(3)] a_clvr_file = '/home/rink/data/clavrx/clavrx_OR_ABI-L1b-RadC-M3C01_G16_s20190020002186.level2.nc' def setup(): ice_dict, no_ice_dict, neg_ice_dict = pirep_icing(pirep_file) return ice_dict, no_ice_dict, neg_ice_dict def get_clavrx_datasource(timestamp): dt_obj, time_tup = get_time_tuple_utc(timestamp) date_dir_str = dt_obj.strftime(dir_fmt) ds = ds_dct.get(date_dir_str) if ds is None: ds = CLAVRx(clavrx_dir + date_dir_str + '/') ds_dct[date_dir_str] = ds return ds def get_goes_datasource(timestamp): dt_obj, time_tup = get_time_tuple_utc(timestamp) yr_dir = str(dt_obj.timetuple().tm_year) date_dir = dt_obj.strftime(dir_fmt) files_path = goes16_directory + '/' + yr_dir + '/' + date_dir + '/abi' + '/L1b' + '/RadC/' ds = goes_ds_dct.get(date_dir) if ds is None: ds = GOESL1B(files_path) goes_ds_dct[date_dir] = ds return ds def get_grid_values(h5f, grid_name, j_c, i_c, half_width, scale_factor_name='scale_factor', add_offset_name='add_offset'): hfds = h5f[grid_name] attrs = hfds.attrs ylen, xlen = hfds.shape j_l = j_c-half_width i_l = i_c-half_width if j_l < 0 or i_l < 0: return None j_r = j_c+half_width+1 i_r = i_c+half_width+1 if j_r >= ylen or i_r >= xlen: return None grd_vals = hfds[j_l:j_r, i_l:i_r] grd_vals = np.where(grd_vals == -999, np.nan, grd_vals) grd_vals = np.where(grd_vals == -32768, np.nan, grd_vals) if attrs is None: return grd_vals if scale_factor_name is not None: scale_factor = attrs.get(scale_factor_name)[0] grd_vals = grd_vals * scale_factor if add_offset_name is not None: add_offset = attrs.get(add_offset_name)[0] grd_vals = grd_vals + add_offset return grd_vals def create_file(filename, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, icing_intensity, unq_ids): h5f_expl = h5py.File(a_clvr_file, 'r') h5f = h5py.File(filename, 'w') for idx, ds_name in enumerate(ds_list): data = data_dct[ds_name] h5f.create_dataset(ds_name, data=data, dtype=ds_types[idx]) lon_ds = h5f.create_dataset('longitude', data=lon_c, dtype='f4') lon_ds.dims[0].label = 'time' lon_ds.attrs.create('units', data='degrees_east') lon_ds.attrs.create('long_name', data='PIREP longitude') lat_ds = h5f.create_dataset('latitude', data=lat_c, dtype='f4') lat_ds.dims[0].label = 'time' lat_ds.attrs.create('units', data='degrees_north') lat_ds.attrs.create('long_name', data='PIREP latitude') time_ds = h5f.create_dataset('time', data=time_s) time_ds.dims[0].label = 'time' time_ds.attrs.create('units', data='seconds since 1970-1-1 00:00:00') time_ds.attrs.create('long_name', data='PIREP time') ice_alt_ds = h5f.create_dataset('icing_altitude', data=fl_alt_s, dtype='f4') ice_alt_ds.dims[0].label = 'time' ice_alt_ds.attrs.create('units', data='m') ice_alt_ds.attrs.create('long_name', data='PIREP altitude') if icing_intensity is not None: icing_int_ds = h5f.create_dataset('icing_intensity', data=icing_intensity, dtype='i4') icing_int_ds.attrs.create('long_name', data='From PIREP. 0:No intensity report, 1:Trace, 2:Light, 3:Light Moderate, 4:Moderate, 5:Moderate Severe, 6:Severe') unq_ids_ds = h5f.create_dataset('unique_id', data=unq_ids, dtype='i4') unq_ids_ds.attrs.create('long_name', data='ID mapping to PIREP icing dictionary: see pireps.py') # copy relevant attributes for ds_name in ds_list: h5f_ds = h5f[ds_name] h5f_ds.attrs.create('standard_name', data=h5f_expl[ds_name].attrs.get('standard_name')) h5f_ds.attrs.create('long_name', data=h5f_expl[ds_name].attrs.get('long_name')) h5f_ds.attrs.create('units', data=h5f_expl[ds_name].attrs.get('units')) h5f_ds.dims[0].label = 'time' h5f_ds.dims[1].label = 'y' h5f_ds.dims[2].label = 'x' h5f.close() h5f_expl.close() def run(pirep_dct, outfile=None, outfile_l1b=None, dt_str_start=None, dt_str_end=None, reduce=False): time_keys = list(pirep_dct.keys()) l1b_grd_dct = {name: [] for name in l1b_ds_list} ds_grd_dct = {name: [] for name in ds_list} t_start = None t_end = None if (dt_str_start is not None) and (dt_str_end is not None): dto = datetime.datetime.strptime(dt_str_start, '%Y-%m-%d_%H:%M').replace(tzinfo=timezone.utc) dto.replace(tzinfo=timezone.utc) t_start = dto.timestamp() dto = datetime.datetime.strptime(dt_str_end, '%Y-%m-%d_%H:%M').replace(tzinfo=timezone.utc) dto.replace(tzinfo=timezone.utc) t_end = dto.timestamp() nav = GEOSNavigation(sub_lon=-75.0, CFAC=5.6E-05, COFF=-0.101332, LFAC=-5.6E-05, LOFF=0.128212, num_elems=2500, num_lines=1500) lon_s = np.zeros(1) lat_s = np.zeros(1) last_clvr_file = None last_h5f = None lon_c = [] lat_c = [] time_s = [] fl_alt_s = [] ice_int_s = [] unq_ids = [] for idx, time in enumerate(time_keys): if t_start is not None: if time < t_start: continue if time > t_end: continue try: clvr_ds = get_clavrx_datasource(time) except Exception: continue clvr_file = clvr_ds.get_file(time)[0] if clvr_file is None: continue if clvr_file != last_clvr_file: try: h5f = h5py.File(clvr_file, 'r') except Exception: if h5f is not None: h5f.close() print('Problem with file: ', clvr_file) continue if last_h5f is not None: last_h5f.close() last_h5f = h5f last_clvr_file = clvr_file else: h5f = last_h5f reports = pirep_dct[time] for tup in reports: lat, lon, fl, I, uid, rpt_str = tup lat_s[0] = lat lon_s[0] = lon cc, ll = nav.earth_to_lc_s(lon_s, lat_s) if cc[0] < 0: continue cnt_a = 0 for didx, ds_name in enumerate(ds_list): gvals = get_grid_values(h5f, ds_name, ll[0], cc[0], 20) if gvals is not None: ds_grd_dct[ds_name].append(gvals) cnt_a += 1 cnt_b = 0 for didx, ds_name in enumerate(l1b_ds_list): gvals = get_grid_values(h5f, ds_name, ll[0], cc[0], 20) if gvals is not None: l1b_grd_dct[ds_name].append(gvals) cnt_b += 1 if cnt_a > 0 and cnt_a != len(ds_list): raise GenericException('weirdness') if cnt_b > 0 and cnt_b != len(l1b_ds_list): raise GenericException('weirdness') if cnt_a == len(ds_list) and cnt_b == len(l1b_ds_list): lon_c.append(lon_s[0]) lat_c.append(lat_s[0]) time_s.append(time) fl_alt_s.append(fl) ice_int_s.append(I) unq_ids.append(uid) if reduce is True: break if len(time_s) == 0: return t_start = time_s[0] t_end = time_s[len(time_s)-1] data_dct = {} for ds_name in ds_list: data_dct[ds_name] = np.array(ds_grd_dct[ds_name]) lon_c = np.array(lon_c) lat_c = np.array(lat_c) time_s = np.array(time_s) fl_alt_s = np.array(fl_alt_s) ice_int_s = np.array(ice_int_s) unq_ids = np.array(unq_ids) if outfile is not None: outfile = add_time_range_to_filename(outfile, t_start, t_end) create_file(outfile, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids) data_dct = {} for ds_name in l1b_ds_list: data_dct[ds_name] = np.array(l1b_grd_dct[ds_name]) if outfile_l1b is not None: outfile_l1b = add_time_range_to_filename(outfile_l1b, t_start, t_end) create_file(outfile_l1b, data_dct, l1b_ds_list, l1b_ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids) def analyze(ice_dct, no_ice_dct): last_file = None ice_files = [] ice_times = [] for ts in list(ice_dct.keys()): try: ds = get_goes_datasource(ts) goes_file, t_0, _ = ds.get_file(ts) if goes_file is not None and goes_file != last_file: ice_files.append(goes_file) ice_times.append(t_0) last_file = goes_file except Exception: continue last_file = None no_ice_files = [] no_ice_times = [] for ts in list(no_ice_dct.keys()): try: ds = get_goes_datasource(ts) goes_file, t_0, _ = ds.get_file(ts) if goes_file is not None and goes_file != last_file: no_ice_files.append(goes_file) no_ice_times.append(t_0) last_file = goes_file except Exception: continue ice_times = np.array(ice_times) no_ice_times = np.array(no_ice_times) itrsct_vals, comm1, comm2 = np.intersect1d(no_ice_times, ice_times, return_indices=True) ice_indexes = np.arange(len(ice_times)) ucomm2 = np.setxor1d(comm2, ice_indexes) np.random.seed(42) np.random.shuffle(ucomm2) ucomm2 = ucomm2[0:8000] files_comm = [] for i in comm2: files_comm.append(ice_files[i]) files_extra = [] times_extra = [] for i in ucomm2: files_extra.append(ice_files[i]) times_extra.append(ice_times[i]) files = files_comm + files_extra times = itrsct_vals.tolist() + times_extra times = np.array(times) sidxs = np.argsort(times) for i in sidxs: filename = os.path.split(files[i])[1] so = re.search('_s\\d{11}', filename) dt_str = so.group() print(dt_str[2:]) def process_2(ice_dct, no_ice_dct, neg_ice_dct): new_ice_dct = {} new_no_ice_dct = {} new_neg_ice_dct = {} ice_keys_5_6 = [] ice_keys_1 = [] ice_keys_4 = [] ice_keys_3 = [] ice_keys_2 = [] print('num keys ice, no_ice, neg_ice: ', len(ice_dct), len(no_ice_dct), len(neg_ice_dct)) no_intensity_cnt = 0 for ts in list(ice_dct.keys()): rpts = ice_dct[ts] for tup in rpts: if tup[3] == 5 or tup[3] == 6: ice_keys_5_6.append(ts) elif tup[3] == 1: ice_keys_1.append(ts) elif tup[3] == 4: ice_keys_4.append(ts) elif tup[3] == 3: ice_keys_3.append(ts) elif tup[3] == 2: ice_keys_2.append(ts) else: no_intensity_cnt += 1 no_ice_keys = [] for ts in list(no_ice_dct.keys()): rpts = no_ice_dct[ts] for tup in rpts: no_ice_keys.append(ts) neg_ice_keys = [] for ts in list(neg_ice_dct.keys()): rpts = neg_ice_dct[ts] for tup in rpts: neg_ice_keys.append(ts) ice_keys_5_6 = np.array(ice_keys_5_6) print('5_6: ', ice_keys_5_6.shape) ice_keys_4 = np.array(ice_keys_4) print('4: ', ice_keys_4.shape) ice_keys_3 = np.array(ice_keys_3) print('3: ', ice_keys_3.shape) ice_keys_2 = np.array(ice_keys_2) print('2: ', ice_keys_2.shape) np.random.seed(42) np.random.shuffle(ice_keys_2) ice_keys_2 = ice_keys_2[0:30000] ice_keys_1 = np.array(ice_keys_1) print('1: ', ice_keys_1.shape) print('no intensity: ', no_intensity_cnt) ice_keys = np.concatenate([ice_keys_5_6, ice_keys_1, ice_keys_2, ice_keys_3, ice_keys_4]) uniq_sorted_keys = np.unique(ice_keys) print('ice: ', ice_keys.shape, uniq_sorted_keys.shape) uniq_sorted_keys = uniq_sorted_keys.tolist() for key in uniq_sorted_keys: new_ice_dct[key] = ice_dct[key] no_ice_keys = np.array(no_ice_keys) print('no ice total: ', no_ice_keys.shape) np.random.seed(42) np.random.shuffle(no_ice_keys) no_ice_keys = no_ice_keys[0:50000] uniq_sorted_no_ice = np.unique(no_ice_keys) print('no ice: ', no_ice_keys.shape, uniq_sorted_no_ice.shape) uniq_sorted_no_ice = uniq_sorted_no_ice.tolist() for key in uniq_sorted_no_ice: new_no_ice_dct[key] = no_ice_dct[key] neg_ice_keys = np.array(neg_ice_keys) print('neg ice total: ', neg_ice_keys.shape) np.random.seed(42) np.random.shuffle(neg_ice_keys) neg_ice_keys = neg_ice_keys[0:5000] uniq_sorted_neg_ice = np.unique(neg_ice_keys) print('neg ice: ', neg_ice_keys.shape, uniq_sorted_neg_ice.shape) for key in uniq_sorted_neg_ice: new_neg_ice_dct[key] = neg_ice_dct[key] return new_ice_dct, new_no_ice_dct, new_neg_ice_dct def process_1(ice_dct, no_ice_dct, neg_ice_dct): new_ice_dct = {} new_no_ice_dct = {} new_neg_ice_dct = {} last_file = None ice_files_5_6 = [] ice_times_5_6 = [] ice_keys_5_6 = [] ice_files_1 = [] ice_times_1 = [] ice_keys_1 = [] ice_files_4 = [] ice_times_4 = [] ice_keys_4 = [] ice_files_3 = [] ice_times_3 = [] ice_keys_3 = [] ice_files_2 = [] ice_times_2 = [] ice_keys_2 = [] print('num keys ice, no_ice, neg_ice: ', len(ice_dct), len(no_ice_dct), len(neg_ice_dct)) for ts in list(ice_dct.keys()): try: ds = get_goes_datasource(ts) goes_file, t_0, _ = ds.get_file(ts) if goes_file is not None and goes_file != last_file: rpts = ice_dct[ts] for tup in rpts: if tup[3] == 5 or tup[3] == 6: ice_files_5_6.append(goes_file) ice_times_5_6.append(t_0) ice_keys_5_6.append(ts) elif tup[3] == 1: ice_files_1.append(goes_file) ice_times_1.append(t_0) ice_keys_1.append(ts) elif tup[3] == 4: ice_files_4.append(goes_file) ice_times_4.append(t_0) ice_keys_4.append(ts) elif tup[3] == 3: ice_files_3.append(goes_file) ice_times_3.append(t_0) ice_keys_3.append(ts) else: ice_files_2.append(goes_file) ice_times_2.append(t_0) ice_keys_2.append(ts) last_file = goes_file except Exception: continue last_file = None no_ice_files = [] no_ice_times = [] no_ice_keys = [] for ts in list(no_ice_dct.keys()): try: ds = get_goes_datasource(ts) goes_file, t_0, _ = ds.get_file(ts) if goes_file is not None and goes_file != last_file: rpts = no_ice_dct[ts] for tup in rpts: no_ice_files.append(goes_file) no_ice_times.append(t_0) no_ice_keys.append(ts) last_file = goes_file except Exception: continue last_file = None neg_ice_files = [] neg_ice_times = [] neg_ice_keys = [] for ts in list(neg_ice_dct.keys()): try: ds = get_goes_datasource(ts) goes_file, t_0, _ = ds.get_file(ts) if goes_file is not None and goes_file != last_file: rpts = neg_ice_dct[ts] for tup in rpts: neg_ice_files.append(goes_file) neg_ice_times.append(t_0) neg_ice_keys.append(ts) last_file = goes_file except Exception: continue ice_times_5_6 = np.array(ice_times_5_6) ice_keys_5_6 = np.array(ice_keys_5_6) print('5_6: ', ice_times_5_6.shape) ice_times_4 = np.array(ice_times_4) ice_keys_4 = np.array(ice_keys_4) print('4: ', ice_times_4.shape) ice_times_3 = np.array(ice_times_3) ice_keys_3 = np.array(ice_keys_3) print('3: ', ice_times_3.shape) ice_times_2 = np.array(ice_times_2) ice_keys_2 = np.array(ice_keys_2) print('2: ', ice_times_2.shape) np.random.seed(42) np.random.shuffle(ice_times_2) np.random.seed(42) np.random.shuffle(ice_keys_2) ice_keys_2 = ice_keys_2[0:30000] ice_times_1 = np.array(ice_times_1) ice_keys_1 = np.array(ice_keys_1) print('1: ', ice_times_1.shape) ice_times = np.concatenate([ice_times_5_6, ice_times_1, ice_times_2, ice_times_3, ice_times_4]) ice_keys = np.concatenate([ice_keys_5_6, ice_keys_1, ice_keys_2, ice_keys_3, ice_keys_4]) uniq_sorted = np.unique(ice_times) uniq_sorted_keys = np.unique(ice_keys) print(ice_times.shape, uniq_sorted.shape) print(ice_keys.shape, uniq_sorted_keys.shape) uniq_sorted_keys = uniq_sorted_keys.tolist() for key in uniq_sorted_keys: new_ice_dct[key] = ice_dct[key] no_ice_times = np.array(no_ice_times) neg_ice_times = np.array(neg_ice_times) print('no ice: ', no_ice_times.shape) print('neg ice: ', neg_ice_times.shape) no_ice_keys = np.array(no_ice_keys) np.random.seed(42) np.random.shuffle(no_ice_keys) no_ice_keys = no_ice_keys[0:50000] uniq_sorted_no_ice = np.unique(no_ice_keys) print(no_ice_keys.shape, uniq_sorted_no_ice.shape) uniq_sorted_no_ice = uniq_sorted_no_ice.tolist() for key in uniq_sorted_no_ice: new_no_ice_dct[key] = no_ice_dct[key] neg_ice_keys = np.array(neg_ice_keys) np.random.seed(42) np.random.shuffle(neg_ice_keys) neg_ice_keys = neg_ice_keys[0:5000] uniq_sorted_neg_ice = np.unique(neg_ice_keys) print(neg_ice_keys.shape, uniq_sorted_neg_ice.shape) for key in uniq_sorted_neg_ice: new_neg_ice_dct[key] = neg_ice_dct[key] return new_ice_dct, new_no_ice_dct, new_neg_ice_dct def run_qc(filename, filename_l1b, outfile, outfile_l1b): f = h5py.File(filename, 'r') icing_alt = f['icing_altitude'][:] cld_top_hgt = f['cld_height_acha'][:, 10:30, 10:30] cld_phase = f['cloud_phase'][:, 10:30, 10:30] cld_opd = f['cld_opd_acha'][:, 10:30, 10:30] cld_opd_dc = f['cld_opd_dcomp'][:, 10:30, 10:30] cld_mask = f['cloud_mask'][:, 10:30, 10:30] f_l1b = h5py.File(filename_l1b, 'r') bt_11um = f_l1b['temp_11_0um_nom'][:, 10:30, 10:30] print('num pireps: ', len(icing_alt)) mask = apply_qc_icing_pireps(icing_alt, cld_top_hgt, cld_phase, cld_opd, cld_mask, bt_11um) bts = [] phs = [] opd = [] opd_dc = [] keep_idxs =[] for i in range(len(mask)): if (np.sum(mask[i]) / 400) > 0.20: bts.append((bt_11um[i,].flatten())[mask[i]]) phs.append((cld_phase[i,].flatten())[mask[i]]) opd.append((cld_opd[i,].flatten())[mask[i]]) #opd_dc.append(cld_opd_dc[i,].flatten())[mask[i]] keep_idxs.append(i) #else: # bts.append((bt_11um[i,].flatten())[mask[i]]) print('num valid pireps: ', len(bts)) bts = np.concatenate(bts) phs = np.concatenate(phs) opd = np.concatenate(opd) #opd_dc = np.concatenate(opd_dc) print(np.histogram(bts, bins=10)) print(np.histogram(opd, bins=10)) #print(np.histogram(opd_dc, bins=10)) print(np.histogram(phs, bins=6)) keep_idxs = np.array(keep_idxs) data_dct = {} for didx, ds_name in enumerate(ds_list): data_dct[ds_name] = f[ds_name][keep_idxs,] lon_c = f['longitude'][keep_idxs] lat_c = f['latitude'][keep_idxs] time_s = f['time'][keep_idxs] fl_alt_s = f['icing_altitude'][keep_idxs] ice_int_s = f['icing_intensity'][keep_idxs] unq_ids = f['unique_id'][keep_idxs] create_file(outfile, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids) data_dct = {} for didx, ds_name in enumerate(l1b_ds_list): data_dct[ds_name] = f_l1b[ds_name][keep_idxs] create_file(outfile_l1b, data_dct, l1b_ds_list, l1b_ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids) f.close() f_l1b.close() return mask def apply_qc_icing_pireps(icing_alt, cld_top_hgt, cld_phase, cld_opd, cld_mask, bt_11um): opd_threshold = 2 closeness = 100.0 # meters num_obs = len(icing_alt) cld_mask = cld_mask.reshape((num_obs, -1)) cld_top_hgt = cld_top_hgt.reshape((num_obs, -1)) cld_phase = cld_phase.reshape((num_obs, -1)) cld_opd = cld_opd.reshape((num_obs, -1)) bt_11um = bt_11um.reshape((num_obs, -1)) skip = False mask = [] for i in range(num_obs): keep_0 = np.logical_or(cld_mask[i,] == 2, cld_mask[i,] == 3) # cloudy keep_1 = np.invert(np.isnan(cld_top_hgt[i,])) keep_2 = np.invert(np.isnan(bt_11um[i,])) keep_3 = np.invert(np.isnan(cld_opd[i,])) keep = keep_0 & keep_1 & keep_2 & keep_3 if skip: mask.append(keep) continue keep = np.where(keep, cld_top_hgt[i,] > icing_alt[i], False) keep = np.where(keep, np.invert((cld_phase[i,] == 4) & np.logical_and(cld_top_hgt[i,]+closeness > icing_alt[i], cld_top_hgt[i,]-closeness < icing_alt[i])), False) keep = np.where(keep, (cld_opd[i,] >= opd_threshold) & (cld_phase[i,] == 4) & (cld_top_hgt[i,] > icing_alt[i]), False) keep = np.where(keep, np.invert((cld_phase[i,] == 4) & (cld_opd[i,] < 0.1) & (cld_top_hgt[i,] > icing_alt[i])), False) keep = np.where(keep, np.invert(bt_11um[i,] > 270.0), False) keep = np.where(keep, np.invert(bt_11um[i,] < 228.0), False) mask.append(keep) return mask