From fea21ce47cc1dfdbcab182c2460628bbb4da20a9 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 22 Jan 2024 10:06:16 -0600 Subject: [PATCH] snapshot... --- modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py b/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py index 8d8b095b..704bfaf7 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py @@ -588,7 +588,7 @@ class SRCNN: labels = tf.squeeze(labels, axis=[3]) with tf.GradientTape() as tape: # pred = self.model([inputs], training=True) - pred = self.model({'2km':inputs[0], 'hkm':inputs[1]}, training=True) + pred = self.model({'2km': inputs[0], 'hkm': inputs[1]}, training=True) loss = self.loss(labels, pred) total_loss = loss if len(self.model.losses) > 0: @@ -608,7 +608,7 @@ class SRCNN: def test_step(self, inputs, labels): labels = tf.squeeze(labels, axis=[3]) # pred = self.model([inputs], training=False) - pred = self.model({'2km':inputs[0], 'hkm':inputs[1]}, training=False) + pred = self.model({'2km': inputs[0], 'hkm': inputs[1]}, training=False) t_loss = self.loss(labels, pred) self.test_loss(t_loss) @@ -618,7 +618,7 @@ class SRCNN: # decorator commented out because pred.numpy(): pred not evaluated yet. def predict(self, inputs, labels): # pred = self.model([inputs], training=False) - pred = self.model({'2km':inputs[0], 'hkm':inputs[1]}, training=False) + pred = self.model({'2km': inputs[0], 'hkm': inputs[1]}, training=False) # t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred) t_loss = self.loss(labels, pred) -- GitLab