diff --git a/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py b/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py index 8d8b095bf13aec7ef7cefc62999679bc90e8a2d6..704bfaf7618259da30ff7fd61267117966655130 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py @@ -588,7 +588,7 @@ class SRCNN: labels = tf.squeeze(labels, axis=[3]) with tf.GradientTape() as tape: # pred = self.model([inputs], training=True) - pred = self.model({'2km':inputs[0], 'hkm':inputs[1]}, training=True) + pred = self.model({'2km': inputs[0], 'hkm': inputs[1]}, training=True) loss = self.loss(labels, pred) total_loss = loss if len(self.model.losses) > 0: @@ -608,7 +608,7 @@ class SRCNN: def test_step(self, inputs, labels): labels = tf.squeeze(labels, axis=[3]) # pred = self.model([inputs], training=False) - pred = self.model({'2km':inputs[0], 'hkm':inputs[1]}, training=False) + pred = self.model({'2km': inputs[0], 'hkm': inputs[1]}, training=False) t_loss = self.loss(labels, pred) self.test_loss(t_loss) @@ -618,7 +618,7 @@ class SRCNN: # decorator commented out because pred.numpy(): pred not evaluated yet. def predict(self, inputs, labels): # pred = self.model([inputs], training=False) - pred = self.model({'2km':inputs[0], 'hkm':inputs[1]}, training=False) + pred = self.model({'2km': inputs[0], 'hkm': inputs[1]}, training=False) # t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred) t_loss = self.loss(labels, pred)