diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py index 4b4e698e2396d8a1de6a118d57541446d7cd2ab0..c5e39c865c45007408120589d723f1530cfd27c0 100644 --- a/modules/deeplearning/icing_fcn.py +++ b/modules/deeplearning/icing_fcn.py @@ -530,41 +530,6 @@ class IcingIntensityFCN: self.get_evaluate_dataset(idxs) - def build_1d_cnn(self): - print('build_1d_cnn') - # padding = 'VALID' - padding = 'SAME' - - # activation = tf.nn.relu - # activation = tf.nn.elu - activation = tf.nn.leaky_relu - - num_filters = 6 - - conv = tf.keras.layers.Conv1D(num_filters, 5, strides=1, padding=padding)(self.inputs[1]) - conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) - print(conv) - - num_filters *= 2 - conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) - conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) - print(conv) - - num_filters *= 2 - conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) - conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) - print(conv) - - num_filters *= 2 - conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) - conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) - print(conv) - - flat = tf.keras.layers.Flatten()(conv) - print(flat) - - return flat - def build_cnn(self): print('build_cnn') # padding = "VALID"