diff --git a/modules/deeplearning/cloud_opd_srcnn.py b/modules/deeplearning/cloud_opd_srcnn.py index a6e7ffab7cf7878ec88521a98f3a86fe49e15089..17f2e5960abfe61550cbba30887bf5b9aba0a54b 100644 --- a/modules/deeplearning/cloud_opd_srcnn.py +++ b/modules/deeplearning/cloud_opd_srcnn.py @@ -69,8 +69,8 @@ KERNEL_SIZE = 3 # target size: (128, 128) N_X = N_Y = 1 if KERNEL_SIZE == 3: - slc_x = slice(2, N_X*128 + 4) - slc_y = slice(2, N_Y*128 + 4) + slc_x = slice(3, N_X*128 + 5) + slc_y = slice(3, N_Y*128 + 5) slc_x_2 = slice(1, int((N_X*128)/2) + 4) slc_y_2 = slice(1, int((N_Y*128)/2) + 4) x_2 = np.arange(int((N_X*128)/2) + 3) @@ -79,8 +79,8 @@ if KERNEL_SIZE == 3: s = np.arange(0, int((N_Y*128)/2) + 3, 0.5) x_k = slice(1, N_X*128 + 3) y_k = slice(1, N_Y*128 + 3) - x_128 = slice(3, N_X*128 + 3) - y_128 = slice(3, N_Y*128 + 3) + x_128 = slice(4, N_X*128 + 4) + y_128 = slice(4, N_Y*128 + 4) elif KERNEL_SIZE == 5: slc_x = slice(3, 135) slc_y = slice(3, 135) @@ -301,17 +301,20 @@ class SRCNN: tmp = input_label[:, idx, :, :] tmp = np.where(np.isnan(tmp), 0, tmp) - lo, hi, std, avg = get_min_max_std(tmp) - lo = upsample_nearest(lo) - hi = upsample_nearest(hi) - avg = upsample_nearest(avg) - lo = normalize(lo, param, mean_std_dct) - hi = normalize(hi, param, mean_std_dct) - avg = normalize(avg, param, mean_std_dct) - - data_norm.append(lo[:, slc_y, slc_x]) - data_norm.append(hi[:, slc_y, slc_x]) - data_norm.append(avg[:, slc_y, slc_x]) + # lo, hi, std, avg = get_min_max_std(tmp) + # lo = upsample_nearest(lo) + # hi = upsample_nearest(hi) + # avg = upsample_nearest(avg) + # lo = normalize(lo, param, mean_std_dct) + # hi = normalize(hi, param, mean_std_dct) + # avg = normalize(avg, param, mean_std_dct) + # + # data_norm.append(lo[:, slc_y, slc_x]) + # data_norm.append(hi[:, slc_y, slc_x]) + # data_norm.append(avg[:, slc_y, slc_x]) + + tmp = normalize(tmp, param, mean_std_dct) + data_norm.append(tmp[:, slc_y, slc_x]) # --------------------------------------------------- tmp = input_data[:, label_idx, :, :] tmp = np.where(np.isnan(tmp), 0, tmp)