From f73a7bc148e21d8b9cb558b45e2b4545b4fc1070 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Thu, 20 Apr 2023 13:03:48 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/cloud_fraction_fcn_viirs.py | 14 +++++++++----- 1 file changed, 9 insertions(+), 5 deletions(-) diff --git a/modules/deeplearning/cloud_fraction_fcn_viirs.py b/modules/deeplearning/cloud_fraction_fcn_viirs.py index 28f76db1..3417af38 100644 --- a/modules/deeplearning/cloud_fraction_fcn_viirs.py +++ b/modules/deeplearning/cloud_fraction_fcn_viirs.py @@ -278,6 +278,7 @@ class SRCNN: self.test_labels = [] self.test_preds = [] self.test_probs = None + self.test_input = [] self.learningRateSchedule = None self.num_data_samples = None @@ -342,7 +343,7 @@ class SRCNN: data_norm.append(lo[:, slc_y, slc_x]) data_norm.append(hi[:, slc_y, slc_x]) - data_norm.append(avg[:, slc_y, slc_x]) + data_norm.append(std[:, slc_y, slc_x]) # --------------------------------------------------- # If next uncommented, take out get_grid_cell_mean # tmp = input_data[:, label_idx, :, :] @@ -580,6 +581,7 @@ class SRCNN: self.test_labels.append(labels) self.test_preds.append(pred.numpy()) + self.test_input.append(inputs[:, :, :, 4]) self.test_loss(t_loss) self.test_accuracy(labels, pred) @@ -722,9 +724,10 @@ class SRCNN: labels = np.concatenate(self.test_labels) preds = np.concatenate(self.test_preds) + inputs = np.concatenate(self.test_input) print(labels.shape, preds.shape) - return labels, preds + return labels, preds, inputs def do_evaluate(self, inputs, ckpt_dir): @@ -775,10 +778,10 @@ class SRCNN: def run_restore_static(directory, ckpt_dir, out_file=None): nn = SRCNN() - labels, preds = nn.run_restore(directory, ckpt_dir) + labels, preds, inputs = nn.run_restore(directory, ckpt_dir) if out_file is not None: np.save(out_file, - [np.squeeze(labels), preds.argmax(axis=3)]) + [np.squeeze(labels), preds.argmax(axis=3), np.squeeze(inputs)]) def run_evaluate_static(in_file, out_file, ckpt_dir): @@ -799,7 +802,8 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): refl_lo, refl_hi, refl_std, refl_avg = get_min_max_std(refl) refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct) refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct) - refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct) + #refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct) + refl_avg = refl_std refl_lo = np.squeeze(refl_lo) refl_hi = np.squeeze(refl_hi) refl_avg = np.squeeze(refl_avg) -- GitLab