diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index b7d5153109efbab582b92e6ebeb0946c5cb493fd..560e9f61dc68481084c040fb7f1dff62399cd491 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -672,7 +672,7 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): nn = SRCNN() out_sr = nn.run_evaluate(data, ckpt_dir) - #out_sr = denormalize(out_sr, label_params[0], mean_std_dct) + # out_sr = denormalize(out_sr, label_params[0], mean_std_dct) if out_file is not None: np.save(out_file, out_sr) else: @@ -682,19 +682,26 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): def analyze(): h5f = h5py.File('/Users/tomrink/clavrx_snpp_viirs.A2019071.0000.001.2019071061610.uwssec_B00038187.level2.h5', 'r') grd = get_grid_values_all(h5f, 'cloud_fraction') - grd = grd[::2, ::2] + grd = np.where(np.isnan(grd), 0, grd) + grd = grd[1600:, 400:1200] print(grd.shape) - leny, lenx = grd.shape + + grd_lr = grd[::2, ::2] + print(grd_lr.shape) + leny, lenx = grd_lr.shape + x = np.arange(lenx) y = np.arange(leny) x_up = np.arange(0, lenx, 0.5) y_up = np.arange(0, leny, 0.5) - grd_a = resample_2d_linear_one(x, y, grd, x_up, y_up) - print(grd_a.shape) + grd_hr = resample_2d_linear_one(x, y, grd_lr, x_up, y_up) + print(grd_hr.shape) h5f.close() + return grd, grd_hr + if __name__ == "__main__": nn = SRCNN()