From f18e4d498c452b0950d2935b359e4194e189f6e2 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Wed, 19 Apr 2023 16:14:14 -0500 Subject: [PATCH] snapshot... --- .../deeplearning/cloud_fraction_fcn_abi.py | 41 +++++++++++-------- 1 file changed, 25 insertions(+), 16 deletions(-) diff --git a/modules/deeplearning/cloud_fraction_fcn_abi.py b/modules/deeplearning/cloud_fraction_fcn_abi.py index a13737c7..e2161efa 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi.py @@ -60,6 +60,7 @@ label_param = 'cloud_probability' params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01', label_param] params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] data_params_half = ['temp_11_0um_nom'] +sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] data_params_full = ['refl_0_65um_nom'] label_idx_i = params_i.index(label_param) @@ -313,27 +314,35 @@ class SRCNN: data_norm = [] for param in data_params_half: # If next 2 uncommented, take out get_grid_cell_mean - # idx = params.index(param) - # tmp = input_data[:, idx, :, :] - idx = params_i.index(param) - tmp = input_label[:, idx, :, :] - tmp = get_grid_cell_mean(tmp) + idx = params.index(param) + tmp = input_data[:, idx, :, :] + # idx = params_i.index(param) + # tmp = input_label[:, idx, :, :] + # tmp = get_grid_cell_mean(tmp) tmp = tmp[:, slc_y, slc_x] tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) - for param in data_params_full: - idx = params_i.index(param) - tmp = input_label[:, idx, :, :] - - lo, hi, std, avg = get_min_max_std(tmp) - lo = normalize(lo, param, mean_std_dct) - hi = normalize(hi, param, mean_std_dct) - avg = normalize(avg, param, mean_std_dct) + for param in sub_fields: + idx = params.index(param) + tmp = input_data[:, idx, :, :] + tmp = tmp[:, slc_y, slc_x] + if param != 'refl_substddev_ch01': + tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + data_norm.append(tmp) - data_norm.append(lo[:, slc_y, slc_x]) - data_norm.append(hi[:, slc_y, slc_x]) - data_norm.append(std[:, slc_y, slc_x]) + # for param in data_params_full: + # idx = params_i.index(param) + # tmp = input_label[:, idx, :, :] + # + # lo, hi, std, avg = get_min_max_std(tmp) + # lo = normalize(lo, param, mean_std_dct) + # hi = normalize(hi, param, mean_std_dct) + # # avg = normalize(avg, param, mean_std_dct) + # + # data_norm.append(lo[:, slc_y, slc_x]) + # data_norm.append(hi[:, slc_y, slc_x]) + # data_norm.append(std[:, slc_y, slc_x]) # --------------------------------------------------- # If next uncommented, take out get_grid_cell_mean # tmp = input_data[:, label_idx, :, :] -- GitLab