diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index 9a74031035d4b492ac6cb3685a9c64908a6ec00a..80d4dcd94c58bfbe5e133614a9e08fb14c71b5da 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -717,16 +717,16 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): refl = np.where(np.isnan(refl), 0, bt) refl = refl[slc_y, slc_x] refl = np.expand_dims(refl, axis=0) - refl = upsample_static(refl, x_2, y_2, t, s, None, None) - print(refl.shape) - refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct) + refl_us = upsample_static(refl, x_2, y_2, t, s, None, None) + print(refl_us.shape) + refl_us = normalize(refl_us, 'refl_0_65um_nom', mean_std_dct) print('REFL done') bt = np.where(np.isnan(bt), 0, bt) bt = bt[slc_y, slc_x] bt = np.expand_dims(bt, axis=0) - bt = upsample_static(bt, x_2, y_2, t, s, None, None) - bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct) + bt_us = upsample_static(bt, x_2, y_2, t, s, None, None) + bt_us = normalize(bt_us, 'temp_11_0um_nom', mean_std_dct) print('BT done') # refl = get_grid_values_all(h5f, 'super/refl_0_65um') @@ -743,11 +743,11 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd) cld_opd = cld_opd[slc_y, slc_x] cld_opd = np.expand_dims(cld_opd, axis=0) - cld_opd = upsample_static(cld_opd, x_2, y_2, t, s, None, None) - cld_opd = normalize(cld_opd, label_param, mean_std_dct) + cld_opd_us = upsample_static(cld_opd, x_2, y_2, t, s, None, None) + cld_opd_us = normalize(cld_opd_us, label_param, mean_std_dct) print('OPD done') - data = np.stack([bt, refl, cld_opd], axis=3) + data = np.stack([bt_us, refl_us, cld_opd_us], axis=3) h5f.close() @@ -765,8 +765,8 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): refl_out[0:(ylen+2*border), 0:(xlen+2*border)] = refl[0, :, :] cld_opd_out[0:(ylen+2*border), 0:(xlen+2*border)] = cld_opd[0, :, :] - refl_out = denormalize(refl_out, 'refl_0_65um_nom', mean_std_dct) - cld_opd_out = denormalize(cld_opd_out, label_param, mean_std_dct) + # refl_out = denormalize(refl_out, 'refl_0_65um_nom', mean_std_dct) + # cld_opd_out = denormalize(cld_opd_out, label_param, mean_std_dct) if out_file is not None: np.save(out_file, (cld_opd_sres_out, refl_out, cld_opd_out, cld_opd_hres))