diff --git a/modules/GSOC/E2_ESRGAN/lib/dataset.py b/modules/GSOC/E2_ESRGAN/lib/dataset.py index d05c56939da4cdd53ecd769f862f4e37f02e8a45..b4ca7e38014631ab5ad6400c67d3e4d9bea1ad8c 100644 --- a/modules/GSOC/E2_ESRGAN/lib/dataset.py +++ b/modules/GSOC/E2_ESRGAN/lib/dataset.py @@ -166,22 +166,35 @@ class OpdNpyDataset: self.dataset = dataset def read_numpy_file_s(self, f_idxs): - data_s = [] + opd_s = [] + refl_s = [] for fi in f_idxs: fname = self.filenames[fi] data = np.load(fname) - data = data[0, ] - data = scale(data, 'cld_opd_dcomp', mean_std_dct) - data = data.astype(np.float32) - data_s.append(data) - hr_image = np.concatenate(data_s) - hr_image = tf.expand_dims(hr_image, axis=3) + + refl = data[0, ] + refl = scale(refl, 'refl_0_65um_nom', mean_std_dct) + refl = refl.astype(np.float32) + refl_s.append(refl) + + opd = data[1, ] + opd = scale(opd, 'cld_opd_dcomp', mean_std_dct) + opd = opd.astype(np.float32) + opd_s.append(opd) + + opd = np.concatenate(opd_s) + refl = np.concatenate(refl_s) + + hr_image = np.stack([refl, opd], axis=3) hr_image = tf.image.crop_to_bounding_box(hr_image, 0, 0, self.hr_size, self.hr_size) + low_resolution = tf.image.resize(hr_image, [self.lr_size, self.lr_size], method='bicubic') low_resolution = tf.math.multiply(low_resolution, 255.0) - hr_image = tf.math.multiply(hr_image, 255.0) low_resolution = tf.clip_by_value(low_resolution, 0, 255) + + hr_image = tf.math.multiply(hr_image[:, :, :, 1], 255.0) high_resolution = tf.clip_by_value(hr_image, 0, 255) + high_resolution = tf.expand_dims(high_resolution, axis=3) low_resolution, high_resolution = augment_image()(low_resolution, high_resolution)