diff --git a/modules/deeplearning/srcnn_l1b_l2_v2.py b/modules/deeplearning/srcnn_l1b_l2_v2.py new file mode 100644 index 0000000000000000000000000000000000000000..a298ff87a4112f4247c917973fbc4fdd3fc3e999 --- /dev/null +++ b/modules/deeplearning/srcnn_l1b_l2_v2.py @@ -0,0 +1,904 @@ +import glob +import tensorflow as tf + +import util.util +from util.setup import logdir, modeldir, cachepath, now, ancillary_path +from util.util import EarlyStop, normalize, denormalize, resample, resample_2d_linear, resample_one,\ + resample_2d_linear_one, get_grid_values_all, add_noise, smooth_2d, smooth_2d_single, median_filter_2d,\ + median_filter_2d_single, downscale_2x +import os, datetime +import numpy as np +import pickle +import h5py +from scipy.ndimage import gaussian_filter + +# L1B M/I-bands: /apollo/cloud/scratch/cwhite/VIIRS_HRES/2019/2019_01_01/ +# CLAVRx: /apollo/cloud/scratch/Satellite_Output/VIIRS_HRES/2019/2019_01_01/ +# /apollo/cloud/scratch/Satellite_Output/andi/NEW/VIIRS_HRES/2019 + +LOG_DEVICE_PLACEMENT = False + +PROC_BATCH_SIZE = 4 +PROC_BATCH_BUFFER_SIZE = 50000 + +NumClasses = 2 +if NumClasses == 2: + NumLogits = 1 +else: + NumLogits = NumClasses + +BATCH_SIZE = 128 +NUM_EPOCHS = 80 + +TRACK_MOVING_AVERAGE = False +EARLY_STOP = True + +NOISE_TRAINING = False +NOISE_STDDEV = 0.01 +DO_AUGMENT = True + +DO_SMOOTH = False +SIGMA = 1.0 +DO_ZERO_OUT = False +DO_ESPCN = False # Note: If True, cannot do mixed resolution input fields (Adjust accordingly below) + +# setup scaling parameters dictionary +mean_std_dct = {} +mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl' +f = open(mean_std_file, 'rb') +mean_std_dct_l2 = pickle.load(f) +f.close() + +mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl' +f = open(mean_std_file, 'rb') +mean_std_dct_l1b = pickle.load(f) +f.close() + +mean_std_dct.update(mean_std_dct_l1b) +mean_std_dct.update(mean_std_dct_l2) + +IMG_DEPTH = 1 +# label_param = 'cloud_fraction' +label_param = 'cld_opd_dcomp' +# label_param = 'cloud_probability' + +params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', label_param] +data_params_half = ['temp_11_0um_nom'] +data_params_full = ['refl_0_65um_nom'] + +label_idx = params.index(label_param) + +print('data_params_half: ', data_params_half) +print('data_params_full: ', data_params_full) +print('label_param: ', label_param) + +KERNEL_SIZE = 3 # target size: (128, 128) +N = 1 + +if KERNEL_SIZE == 3: + slc_x = slice(1, N*64 + 4) + slc_y = slice(1, N*64 + 4) + x_2 = np.arange(N*64 + 3) + y_2 = np.arange(N*64 + 3) + t = np.arange(0.5, N*64 + 2.5, 0.5) + s = np.arange(0.5, N*64 + 2.5, 0.5) + x_k = slice(1, N*128 + 3) + y_k = slice(1, N*128 + 3) + x_128 = slice(4, N*128 + 4) + y_128 = slice(4, N*128 + 4) +elif KERNEL_SIZE == 5: + # slc_x = slice(3, 135) + # slc_y = slice(3, 135) + # slc_x_2 = slice(2, 137, 2) + # slc_y_2 = slice(2, 137, 2) + # x_128 = slice(5, 133) + # y_128 = slice(5, 133) + # t = np.arange(1, 67, 0.5) + # s = np.arange(1, 67, 0.5) + # x_2 = np.arange(68) + # y_2 = np.arange(68) + pass # Not yet +# ---------------------------------------- +# Exp for ESPCN version +if DO_ESPCN: + slc_x_2 = slice(0, 132, 2) + slc_y_2 = slice(0, 132, 2) + x_128 = slice(2, 130) + y_128 = slice(2, 130) + + +def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', + kernel_initializer='he_uniform', scale=None, kernel_size=3, + do_drop_out=True, drop_rate=0.5, do_batch_norm=True): + + with tf.name_scope(block_name): + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv) + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip) + + if scale is not None: + skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip) + + if do_drop_out: + skip = tf.keras.layers.Dropout(drop_rate)(skip) + + if do_batch_norm: + skip = tf.keras.layers.BatchNormalization()(skip) + + conv = conv + skip + print(block_name+':', conv.shape) + + return conv + + +def upsample(tmp): + # tmp = tmp[:, slc_y_2, slc_x_2] + tmp = tmp[:, slc_y, slc_x] + tmp = resample_2d_linear(x_2, y_2, tmp, t, s) + tmp = tmp[:, y_k, x_k] + return tmp + + +def upsample_nearest(tmp): + bsize = tmp.shape[0] + tmp_2 = tmp[:, slc_y_2, slc_x_2] + up = np.zeros(bsize, t.size, s.size) + for k in range(bsize): + for j in range(t.size/2): + for i in range(s.size/2): + up[k, j, i] = tmp_2[k, j, i] + up[k, j, i+1] = tmp_2[k, j, i] + up[k, j+1, i] = tmp_2[k, j, i] + up[k, j+1, i+1] = tmp_2[k, j, i] + return up + + +class SRCNN: + + def __init__(self): + + self.train_data = None + self.train_label = None + self.test_data = None + self.test_label = None + self.test_data_denorm = None + + self.train_dataset = None + self.inner_train_dataset = None + self.test_dataset = None + self.eval_dataset = None + self.X_img = None + self.X_prof = None + self.X_u = None + self.X_v = None + self.X_sfc = None + self.inputs = [] + self.y = None + self.handle = None + self.inner_handle = None + self.in_mem_batch = None + + self.h5f_l1b_trn = None + self.h5f_l1b_tst = None + self.h5f_l2_trn = None + self.h5f_l2_tst = None + + self.logits = None + + self.predict_data = None + self.predict_dataset = None + self.mean_list = None + self.std_list = None + + self.training_op = None + self.correct = None + self.accuracy = None + self.loss = None + self.pred_class = None + self.variable_averages = None + + self.global_step = None + + self.writer_train = None + self.writer_valid = None + self.writer_train_valid_loss = None + + self.OUT_OF_RANGE = False + + self.abi = None + self.temp = None + self.wv = None + self.lbfp = None + self.sfc = None + + self.in_mem_data_cache = {} + self.in_mem_data_cache_test = {} + + self.model = None + self.optimizer = None + self.ema = None + self.train_loss = None + self.train_accuracy = None + self.test_loss = None + self.test_accuracy = None + self.test_auc = None + self.test_recall = None + self.test_precision = None + self.test_confusion_matrix = None + self.test_true_pos = None + self.test_true_neg = None + self.test_false_pos = None + self.test_false_neg = None + + self.test_labels = [] + self.test_preds = [] + self.test_probs = None + + self.learningRateSchedule = None + self.num_data_samples = None + self.initial_learning_rate = None + + self.data_dct = None + self.train_data_files = None + self.train_label_files = None + self.test_data_files = None + self.test_label_files = None + + self.train_data_nda = None + self.train_label_nda = None + self.test_data_nda = None + self.test_label_nda = None + + self.n_chans = len(data_params_half) + len(data_params_full) + 1 + + self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) + + self.inputs.append(self.X_img) + + tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) + + def get_in_mem_data_batch(self, idxs, is_training): + if is_training: + files = self.train_data_files + else: + files = self.test_data_files + + data_s = [] + for k in idxs: + f = files[k] + try: + nda = np.load(f) + except Exception: + print(f) + continue + data_s.append(nda) + input_data = np.concatenate(data_s) + + DO_ADD_NOISE = False + if is_training and NOISE_TRAINING: + DO_ADD_NOISE = True + + data_norm = [] + for param in data_params_half: + idx = params.index(param) + tmp = input_data[:, idx, :, :] + tmp = tmp.copy() + tmp = np.where(np.isnan(tmp), 0, tmp) + if DO_ESPCN: + tmp = tmp[:, slc_y_2, slc_x_2] + else: # Half res upsampled to full res: + tmp = upsample(tmp) + tmp = normalize(tmp, param, mean_std_dct) + if DO_ADD_NOISE: + tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) + data_norm.append(tmp) + + for param in data_params_full: + idx = params.index(param) + tmp = input_data[:, idx, :, :] + tmp = tmp.copy() + tmp = np.where(np.isnan(tmp), 0, tmp) + # Full res: + tmp = tmp[:, slc_y, slc_x] + tmp = normalize(tmp, param, mean_std_dct) + if DO_ADD_NOISE: + tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) + data_norm.append(tmp) + # --------------------------------------------------- + tmp = input_data[:, label_idx, :, :] + tmp = tmp.copy() + tmp = np.where(np.isnan(tmp), 0, tmp) + if DO_SMOOTH: + tmp = smooth_2d(tmp, sigma=SIGMA) + # tmp = median_filter_2d(tmp) + if DO_ESPCN: + tmp = tmp[:, slc_y_2, slc_x_2] + else: # Half res upsampled to full res: + tmp = upsample(tmp) + if label_param != 'cloud_probability': + tmp = normalize(tmp, label_param, mean_std_dct) + if DO_ADD_NOISE: + tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) + else: + if DO_ADD_NOISE: + tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) + tmp = np.where(tmp < 0.0, 0.0, tmp) + tmp = np.where(tmp > 1.0, 1.0, tmp) + data_norm.append(tmp) + # --------- + data = np.stack(data_norm, axis=3) + data = data.astype(np.float32) + # ----------------------------------------------------- + # ----------------------------------------------------- + label = input_data[:, label_idx, :, :] + label = label.copy() + if DO_SMOOTH: + label = np.where(np.isnan(label), 0, label) + label = smooth_2d(label, sigma=SIGMA) + # label = median_filter_2d(label) + label = label[:, y_128, x_128] + + if label_param != 'cloud_probability': + label = normalize(label, label_param, mean_std_dct) + else: + label = np.where(np.isnan(label), 0, label) + label = np.expand_dims(label, axis=3) + + data = data.astype(np.float32) + label = label.astype(np.float32) + + if is_training and DO_AUGMENT: + data_ud = np.flip(data, axis=1) + label_ud = np.flip(label, axis=1) + + data_lr = np.flip(data, axis=2) + label_lr = np.flip(label, axis=2) + + data = np.concatenate([data, data_ud, data_lr]) + label = np.concatenate([label, label_ud, label_lr]) + + return data, label + + def get_in_mem_data_batch_train(self, idxs): + return self.get_in_mem_data_batch(idxs, True) + + def get_in_mem_data_batch_test(self, idxs): + return self.get_in_mem_data_batch(idxs, False) + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) + def data_function(self, indexes): + out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32]) + return out + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) + def data_function_test(self, indexes): + out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32]) + return out + + def get_train_dataset(self, indexes): + indexes = list(indexes) + + dataset = tf.data.Dataset.from_tensor_slices(indexes) + dataset = dataset.batch(PROC_BATCH_SIZE) + dataset = dataset.map(self.data_function, num_parallel_calls=8) + dataset = dataset.cache() + if DO_AUGMENT: + dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) + dataset = dataset.prefetch(buffer_size=1) + self.train_dataset = dataset + + def get_test_dataset(self, indexes): + indexes = list(indexes) + + dataset = tf.data.Dataset.from_tensor_slices(indexes) + dataset = dataset.batch(PROC_BATCH_SIZE) + dataset = dataset.map(self.data_function_test, num_parallel_calls=8) + dataset = dataset.cache() + self.test_dataset = dataset + + def setup_pipeline(self, train_data_files, test_data_files, num_train_samples): + + self.train_data_files = train_data_files + self.test_data_files = test_data_files + + trn_idxs = np.arange(len(train_data_files)) + np.random.shuffle(trn_idxs) + tst_idxs = np.arange(len(test_data_files)) + + self.get_train_dataset(trn_idxs) + self.get_test_dataset(tst_idxs) + + self.num_data_samples = num_train_samples # approximately + + print('datetime: ', now) + print('training and test data: ') + print('---------------------------') + print('num train samples: ', self.num_data_samples) + print('BATCH SIZE: ', BATCH_SIZE) + print('num test samples: ', tst_idxs.shape[0]) + print('setup_pipeline: Done') + + def setup_test_pipeline(self, test_data_files): + self.test_data_files = test_data_files + tst_idxs = np.arange(len(test_data_files)) + self.get_test_dataset(tst_idxs) + print('setup_test_pipeline: Done') + + def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2): + print('build_cnn') + padding = "SAME" + + # activation = tf.nn.relu + # activation = tf.nn.elu + activation = tf.nn.relu + momentum = 0.99 + + num_filters = 64 + + input_2d = self.inputs[0] + print('input: ', input_2d.shape) + + conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d) + print(conv.shape) + + # if NOISE_TRAINING: + # conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv) + + scale = 0.2 + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b) + + conv = conv + conv_b + print(conv.shape) + + if not DO_ESPCN: + # This is effectively a Dense layer + self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='regression')(conv) + else: + conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding=padding, activation=activation)(conv) + print(conv.shape) + conv = tf.nn.depth_to_space(conv, factor) + print(conv.shape) + self.logits = tf.keras.layers.Conv2D(IMG_DEPTH, kernel_size=3, strides=1, padding=padding, name='regression')(conv) + print(self.logits.shape) + + def build_training(self): + # if NumClasses == 2: + # self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only + # else: + # self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class + # self.loss = tf.keras.losses.MeanAbsoluteError() # Regression + self.loss = tf.keras.losses.MeanSquaredError() # Regression + + # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) + initial_learning_rate = 0.005 + decay_rate = 0.95 + steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch + decay_steps = int(steps_per_epoch) + print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) + + self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) + + optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) + + if TRACK_MOVING_AVERAGE: + # Not really sure this works properly (from tfa) + # optimizer = tfa.optimizers.MovingAverage(optimizer) + self.ema = tf.train.ExponentialMovingAverage(decay=0.9999) + + self.optimizer = optimizer + self.initial_learning_rate = initial_learning_rate + + def build_evaluation(self): + self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy') + self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy') + self.train_loss = tf.keras.metrics.Mean(name='train_loss') + self.test_loss = tf.keras.metrics.Mean(name='test_loss') + + @tf.function + def train_step(self, mini_batch): + inputs = [mini_batch[0]] + labels = mini_batch[1] + with tf.GradientTape() as tape: + pred = self.model(inputs, training=True) + loss = self.loss(labels, pred) + total_loss = loss + if len(self.model.losses) > 0: + reg_loss = tf.math.add_n(self.model.losses) + total_loss = loss + reg_loss + gradients = tape.gradient(total_loss, self.model.trainable_variables) + self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) + if TRACK_MOVING_AVERAGE: + self.ema.apply(self.model.trainable_variables) + + self.train_loss(loss) + self.train_accuracy(labels, pred) + + return loss + + @tf.function + def test_step(self, mini_batch): + inputs = [mini_batch[0]] + labels = mini_batch[1] + pred = self.model(inputs, training=False) + t_loss = self.loss(labels, pred) + + self.test_loss(t_loss) + self.test_accuracy(labels, pred) + + def predict(self, mini_batch): + inputs = [mini_batch[0]] + labels = mini_batch[1] + pred = self.model(inputs, training=False) + t_loss = self.loss(labels, pred) + + self.test_labels.append(labels) + self.test_preds.append(pred.numpy()) + + self.test_loss(t_loss) + self.test_accuracy(labels, pred) + + def reset_test_metrics(self): + self.test_loss.reset_states() + self.test_accuracy.reset_states() + + def get_metrics(self): + recall = self.test_recall.result() + precsn = self.test_precision.result() + f1 = 2 * (precsn * recall) / (precsn + recall) + + tn = self.test_true_neg.result() + tp = self.test_true_pos.result() + fn = self.test_false_neg.result() + fp = self.test_false_pos.result() + + mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) + return f1, mcc + + def do_training(self, ckpt_dir=None): + + if ckpt_dir is None: + if not os.path.exists(modeldir): + os.mkdir(modeldir) + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) + else: + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + ckpt.restore(ckpt_manager.latest_checkpoint) + + self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) + self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) + self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss')) + + step = 0 + total_time = 0 + best_test_loss = np.finfo(dtype=np.float).max + + if EARLY_STOP: + es = EarlyStop() + + for epoch in range(NUM_EPOCHS): + self.train_loss.reset_states() + self.train_accuracy.reset_states() + + t0 = datetime.datetime.now().timestamp() + + proc_batch_cnt = 0 + n_samples = 0 + + for data, label in self.train_dataset: + trn_ds = tf.data.Dataset.from_tensor_slices((data, label)) + trn_ds = trn_ds.batch(BATCH_SIZE) + for mini_batch in trn_ds: + if self.learningRateSchedule is not None: + loss = self.train_step(mini_batch) + + if (step % 100) == 0: + + with self.writer_train.as_default(): + tf.summary.scalar('loss_trn', loss.numpy(), step=step) + tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step) + tf.summary.scalar('num_train_steps', step, step=step) + tf.summary.scalar('num_epochs', epoch, step=step) + + self.reset_test_metrics() + for data_tst, label_tst in self.test_dataset: + tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst)) + tst_ds = tst_ds.batch(BATCH_SIZE) + for mini_batch_test in tst_ds: + self.test_step(mini_batch_test) + + with self.writer_valid.as_default(): + tf.summary.scalar('loss_val', self.test_loss.result(), step=step) + tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) + + with self.writer_train_valid_loss.as_default(): + tf.summary.scalar('loss_trn', loss.numpy(), step=step) + tf.summary.scalar('loss_val', self.test_loss.result(), step=step) + + print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), + self.optimizer._decayed_lr('float32').numpy()) + + step += 1 + print('train loss: ', loss.numpy()) + + proc_batch_cnt += 1 + n_samples += data.shape[0] + print('proc_batch_cnt: ', proc_batch_cnt, n_samples) + + t1 = datetime.datetime.now().timestamp() + print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) + total_time += (t1-t0) + + self.reset_test_metrics() + for data, label in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((data, label)) + ds = ds.batch(BATCH_SIZE) + for mini_batch in ds: + self.test_step(mini_batch) + + print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) + print('------------------------------------------------------') + + tst_loss = self.test_loss.result().numpy() + if tst_loss < best_test_loss: + best_test_loss = tst_loss + ckpt_manager.save() + + if EARLY_STOP and es.check_stop(tst_loss): + break + + print('total time: ', total_time) + self.writer_train.close() + self.writer_valid.close() + self.writer_train_valid_loss.close() + + # f = open(home_dir+'/best_stats_'+now+'.pkl', 'wb') + # pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f) + # f.close() + + def build_model(self): + self.build_srcnn() + self.model = tf.keras.Model(self.inputs, self.logits) + + def restore(self, ckpt_dir): + + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + ckpt.restore(ckpt_manager.latest_checkpoint) + + self.reset_test_metrics() + + for data, label in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((data, label)) + ds = ds.batch(BATCH_SIZE) + for mini_batch_test in ds: + self.predict(mini_batch_test) + + print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) + + labels = np.concatenate(self.test_labels) + preds = np.concatenate(self.test_preds) + print(labels.shape, preds.shape) + + labels_denorm = denormalize(labels, label_param, mean_std_dct) + preds_denorm = denormalize(preds, label_param, mean_std_dct) + + return labels_denorm, preds_denorm + + def do_evaluate(self, data, ckpt_dir): + + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + ckpt.restore(ckpt_manager.latest_checkpoint) + + self.reset_test_metrics() + + pred = self.model([data], training=False) + self.test_probs = pred + pred = pred.numpy() + if label_param != 'cloud_probability': + pred = denormalize(pred, label_param, mean_std_dct) + + return pred + + def run(self, directory, ckpt_dir=None, num_data_samples=50000): + train_data_files = glob.glob(directory+'data_train_*.npy') + valid_data_files = glob.glob(directory+'data_valid_*.npy') + + self.setup_pipeline(train_data_files, valid_data_files, num_data_samples) + self.build_model() + self.build_training() + self.build_evaluation() + self.do_training(ckpt_dir=ckpt_dir) + + def run_restore(self, directory, ckpt_dir): + valid_data_files = glob.glob(directory + 'data_valid*.npy') + self.num_data_samples = 1000 + self.setup_test_pipeline(valid_data_files) + self.build_model() + self.build_training() + self.build_evaluation() + return self.restore(ckpt_dir) + + def run_evaluate(self, data, ckpt_dir): + data = tf.convert_to_tensor(data, dtype=tf.float32) + self.num_data_samples = 80000 + self.build_model() + self.build_training() + self.build_evaluation() + return self.do_evaluate(data, ckpt_dir) + + +def run_restore_static(directory, ckpt_dir, out_file=None): + nn = SRCNN() + labels_denorm, preds_denorm = nn.run_restore(directory, ckpt_dir) + if out_file is not None: + np.save(out_file, [labels_denorm, preds_denorm]) + + +def run_evaluate_static(in_file, out_file, ckpt_dir): + N = 10 + + slc_x = slice(2, N*128 + 4) + slc_y = slice(2, N*128 + 4) + slc_x_2 = slice(1, N*128 + 6, 2) + slc_y_2 = slice(1, N*128 + 6, 2) + x_2 = np.arange(int((N*128)/2) + 3) + y_2 = np.arange(int((N*128)/2) + 3) + t = np.arange(0, int((N*128)/2) + 3, 0.5) + s = np.arange(0, int((N*128)/2) + 3, 0.5) + x_k = slice(1, N*128 + 3) + y_k = slice(1, N*128 + 3) + x_128 = slice(3, N*128 + 3) + y_128 = slice(3, N*128 + 3) + + sub_y, sub_x = (N * 128) + 10, (N * 128) + 10 + y_0, x_0, = 3232 - int(sub_y/2), 3200 - int(sub_x/2) + + h5f = h5py.File(in_file, 'r') + + grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') + grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] + grd_a = grd_a.copy() + grd_a = np.where(np.isnan(grd_a), 0, grd_a) + hr_grd_a = grd_a.copy() + hr_grd_a = hr_grd_a[y_128, x_128] + # Full res: + # grd_a = grd_a[slc_y, slc_x] + # Half res: + grd_a = grd_a[slc_y_2, slc_x_2] + grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s) + grd_a = grd_a[y_k, x_k] + grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) + # ------------------------------------------------------ + grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') + grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] + grd_b = grd_b.copy() + grd_b = np.where(np.isnan(grd_b), 0, grd_b) + hr_grd_b = grd_b.copy() + hr_grd_b = hr_grd_b[y_128, x_128] + grd_b = grd_b[slc_y, slc_x] + grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) + + grd_c = get_grid_values_all(h5f, label_param) + grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x] + hr_grd_c = grd_c.copy() + hr_grd_c = np.where(np.isnan(hr_grd_c), 0, grd_c) + hr_grd_c = hr_grd_c[y_128, x_128] + # hr_grd_c = smooth_2d_single(hr_grd_c, sigma=1.0) + grd_c = np.where(np.isnan(grd_c), 0, grd_c) + grd_c = grd_c.copy() + # grd_c = smooth_2d_single(grd_c, sigma=1.0) + grd_c = grd_c[slc_y_2, slc_x_2] + grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s) + grd_c = grd_c[y_k, x_k] + if label_param != 'cloud_probability': + grd_c = normalize(grd_c, label_param, mean_std_dct) + + data = np.stack([grd_a, grd_b, grd_c], axis=2) + data = np.expand_dims(data, axis=0) + + h5f.close() + + nn = SRCNN() + out_sr = nn.run_evaluate(data, ckpt_dir) + if out_file is not None: + np.save(out_file, (out_sr[0, :, :, 0], hr_grd_a, hr_grd_b, hr_grd_c)) + else: + return out_sr, hr_grd_a, hr_grd_b, hr_grd_c + + +def analyze(file='/Users/tomrink/cld_opd_out.npy'): + # Save this: + # nn.test_data_files = glob.glob('/Users/tomrink/data/clavrx_opd_valid_DAY/data_valid*.npy') + # idxs = np.arange(50) + # dat, lbl = nn.get_in_mem_data_batch(idxs, False) + # tmp = dat[:, 1:128, 1:128, 1] + # tmp = dat[:, 1:129, 1:129, 1] + + tup = np.load(file, allow_pickle=True) + lbls = tup[0] + pred = tup[1] + + lbls = lbls[:, :, :, 0] + pred = pred[:, :, :, 0] + print('Total num pixels: ', lbls.size) + + pred = pred.flatten() + pred = np.where(pred < 0.0, 0.0, pred) + lbls = lbls.flatten() + diff = pred - lbls + + mae = (np.sum(np.abs(diff))) / diff.size + print('MAE: ', mae) + + bin_edges = [] + bin_ranges = [] + + bin_ranges.append([0.0, 5.0]) + bin_edges.append(0.0) + + bin_ranges.append([5.0, 10.0]) + bin_edges.append(5.0) + + bin_ranges.append([10.0, 15.0]) + bin_edges.append(10.0) + + bin_ranges.append([15.0, 20.0]) + bin_edges.append(15.0) + + bin_ranges.append([20.0, 30.0]) + bin_edges.append(20.0) + + bin_ranges.append([30.0, 40.0]) + bin_edges.append(30.0) + + bin_ranges.append([40.0, 60.0]) + bin_edges.append(40.0) + + bin_ranges.append([60.0, 80.0]) + bin_edges.append(60.0) + + bin_ranges.append([80.0, 100.0]) + bin_edges.append(80.0) + + bin_ranges.append([100.0, 120.0]) + bin_edges.append(100.0) + + bin_ranges.append([120.0, 140.0]) + bin_edges.append(120.0) + + bin_ranges.append([140.0, 160.0]) + bin_edges.append(140.0) + + bin_edges.append(160.0) + + diff_by_value_bins = util.util.bin_data_by(diff, lbls, bin_ranges) + + values = [] + for k in range(len(bin_ranges)): + diff_k = diff_by_value_bins[k] + mae_k = (np.sum(np.abs(diff_k)) / diff_k.size) + values.append(int(mae_k/bin_ranges[k][1] * 100.0)) + + print('MAE: ', diff_k.size, bin_ranges[k], mae_k) + + return np.array(values), bin_edges + + +if __name__ == "__main__": + nn = SRCNN() + nn.run('matchup_filename')