From e852fdd940dcfea7ce62c3af97bea00da5e996c8 Mon Sep 17 00:00:00 2001
From: tomrink <rink@ssec.wisc.edu>
Date: Wed, 12 Apr 2023 12:39:55 -0500
Subject: [PATCH] snapshot...

---
 modules/deeplearning/cloud_opd_srcnn_viirs.py | 28 +++++++++----------
 1 file changed, 14 insertions(+), 14 deletions(-)

diff --git a/modules/deeplearning/cloud_opd_srcnn_viirs.py b/modules/deeplearning/cloud_opd_srcnn_viirs.py
index 1eebf7d6..5c85fb49 100644
--- a/modules/deeplearning/cloud_opd_srcnn_viirs.py
+++ b/modules/deeplearning/cloud_opd_srcnn_viirs.py
@@ -67,21 +67,21 @@ print('label_param: ', label_param)
 
 KERNEL_SIZE = 3  # target size: (128, 128)
 N_X = N_Y = 1
-LEX_X = LEN_Y = 128
+LEN_X = LEN_Y = 128
 
 if KERNEL_SIZE == 3:
-    slc_x = slice(3, N_X*128 + 5)
-    slc_y = slice(3, N_Y*128 + 5)
-    slc_x_2 = slice(1, int((N_X*128)/2) + 4)
-    slc_y_2 = slice(1, int((N_Y*128)/2) + 4)
-    x_2 = np.arange(int((N_X*128)/2) + 3)
-    y_2 = np.arange(int((N_Y*128)/2) + 3)
-    t = np.arange(0, int((N_X*128)/2) + 3, 0.5)
-    s = np.arange(0, int((N_Y*128)/2) + 3, 0.5)
-    x_k = slice(1, N_X*128 + 3)
-    y_k = slice(1, N_Y*128 + 3)
-    x_128 = slice(4, N_X*128 + 4)
-    y_128 = slice(4, N_Y*128 + 4)
+    slc_x = slice(2, N_X*LEN_X + 4)
+    slc_y = slice(2, N_Y*LEN_Y + 4)
+    slc_x_2 = slice(1, N_X*LEN_X + 6, 2)
+    slc_y_2 = slice(1, N_Y*LEN_Y + 6, 2)
+    x_2 = np.arange(int((N_X*LEN_X)/2) + 3)
+    y_2 = np.arange(int((N_Y*LEN_Y)/2) + 3)
+    t = np.arange(0, int((N_X*LEN_X)/2) + 3, 0.5)
+    s = np.arange(0, int((N_Y*LEN_Y)/2) + 3, 0.5)
+    x_k = slice(1, N_X*LEN_X + 3)
+    y_k = slice(1, N_Y*LEN_Y + 3)
+    x_128 = slice(3, N_X*LEN_X + 3)
+    y_128 = slice(3, N_Y*LEN_Y + 3)
 elif KERNEL_SIZE == 5:
     slc_x = slice(3, 135)
     slc_y = slice(3, 135)
@@ -317,7 +317,7 @@ class SRCNN:
             tmp = normalize(tmp, param, mean_std_dct)
             data_norm.append(tmp[:, slc_y, slc_x])
         # ---------------------------------------------------
-        tmp = input_data[:, label_idx, :, :]
+        tmp = input_label[:, label_idx_i, :, :]
         tmp = np.where(np.isnan(tmp), 0, tmp)
         tmp = upsample(tmp)
         data_norm.append(tmp)
-- 
GitLab