diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 114ec36d4bb6b9816b2ec919b99123af32b968f1..af5fe63fcfcdfc784ea8080815c90a3a0ae7beb9 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -217,12 +217,12 @@ class SRCNN: idx = params.index(param) tmp = input_data[:, idx, 3:131:2, 3:131:2] # tmp = resample(y_64, x_64, tmp, s, t) - tmp = resample_2d_linear(y_64, x_64, tmp, s, t) + tmp = resample_2d_linear(x_64, y_64, tmp, t, s) tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) data_norm.append(tmp) # -------- tmp = input_data[:, 2, 3:131:2, 3:131:2] - tmp = resample_2d_linear(y_64, x_64, tmp, s, t) + tmp = resample_2d_linear(x_64, y_64, tmp, t, s) #tmp = normalize(tmp, 'temp_11_0um_nom', mean_std_dct) data_norm.append(tmp) # --------- @@ -678,10 +678,10 @@ def run_evaluate_static_new(in_file, out_file, ckpt_dir): x_up = np.arange(0, lenx, 0.5) y_up = np.arange(0, leny, 0.5) - grd_a = resample_2d_linear_one(y, x, grd_a, y_up, x_up) + grd_a = resample_2d_linear_one(x, y, grd_a, x_up, y_up) grd_a = normalize(grd_a, data_params[0], mean_std_dct) - grd_b = resample_2d_linear_one(y, x, grd_b, y_up, x_up) + grd_b = resample_2d_linear_one(x, y, grd_b, x_up, y_up) data = np.stack([grd_a, grd_b], axis=2) data = np.expand_dims(data, axis=0)