diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py index c44153cd496357adf9e5276695c6cfbe8e0d647d..3ce7f08aea6e30e7f6ab02d1eca35ab7658c7031 100644 --- a/modules/deeplearning/icing_fcn.py +++ b/modules/deeplearning/icing_fcn.py @@ -413,26 +413,6 @@ class IcingIntensityFCN: def get_in_mem_data_batch_test(self, idxs): return self.get_in_mem_data_batch(idxs, False) - # For full image processing, not quite there yet :( - # def get_in_mem_data_batch_eval(self, idxs): - # data = [] - # for param in self.train_params: - # nda = self.data_dct[param] - # nda = normalize(nda, param, mean_std_dct) - # data.append(nda) - # data = np.stack(data) - # data = data.astype(np.float32) - # data = np.transpose(data, axes=(1, 2, 0)) - # data = np.expand_dims(data, axis=0) - # - # nda = np.zeros([1]) - # nda[0] = self.flight_level - # nda = tf.one_hot(nda, 5).numpy() - # nda = np.expand_dims(nda, axis=0) - # nda = np.expand_dims(nda, axis=0) - # - # return data, nda - def get_in_mem_data_batch_eval(self, idxs): # sort these to use as numpy indexing arrays nd_idxs = np.array(idxs)