From e2d7db05c2c6ba7b232458cd288ce00710f6d8af Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Fri, 19 May 2023 09:42:54 -0500 Subject: [PATCH] snapshot... --- .../deeplearning/cloud_fraction_fcn_abi.py | 33 +++++++++---------- 1 file changed, 16 insertions(+), 17 deletions(-) diff --git a/modules/deeplearning/cloud_fraction_fcn_abi.py b/modules/deeplearning/cloud_fraction_fcn_abi.py index f3a0f7ff..dabad740 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi.py @@ -778,30 +778,29 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): bt = get_grid_values_all(h5f, 'temp_11_0um_nom') refl = get_grid_values_all(h5f, 'refl_0_65um_nom') - bt = bt[0:2500, :] - refl = refl[0:2500, :] - y_len, x_len = bt.shape[0], bt.shape[1] + refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub') + refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub') + refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub') + cp = get_grid_values_all(h5f, label_param) lons = get_grid_values_all(h5f, 'longitude') lats = get_grid_values_all(h5f, 'latitude') - lons = lons[0:2500, :] - lats = lats[0:2500, :] - bt = np.where(np.isnan(bt), 0, bt) + + # bt = bt[0:2500, :] + # refl = refl[0:2500, :] + # lons = lons[0:2500, :] + # lats = lats[0:2500, :] + # refl_lo = refl_lo[0:2500, :] + # refl_hi = refl_hi[0:2500, :] + # refl_std = refl_std[0:2500, :] + # cp = cp[0:2500, :] + + y_len, x_len = bt.shape[0], bt.shape[1] + bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct) - refl = np.where(np.isnan(refl), 0, refl) refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct) - - refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub') - refl_lo = refl_lo[0:2500, :] refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct) - refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub') - refl_hi = refl_hi[0:2500, :] refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct) - refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub') - refl_std = refl_std[0:2500, :] refl_std = np.where(np.isnan(refl_std), 0, refl_std) - - cp = get_grid_values_all(h5f, label_param) - cp = cp[0:2500, :] cp = np.where(np.isnan(cp), 0, cp) data = np.stack([bt, refl, refl_lo, refl_hi, refl_std, cp], axis=2) -- GitLab